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Abstract:  Unsteady flow fields around airfoils pitching or/and plunging are investigated. The 
objective of this study is to show the influence of the aeroelastic parameters that characterize the 
airfoils, in an incompressible flow. In the present work, a finite-volume numerical method is used 
for the solution of the tow-dimensional unsteady Navier-Stokes equations in general moving 
curvilinear coordinates to predict the flow past an airfoil. The method employs the semi-strong 
conservation form of the governing equations with pressure and physical contravarient velocity 
components as dependent variables. The SIMPLE algorithm is used to handle the pressure-velocity 
coupling. The flow field calculation is strongly coupled with the dynamic response of the airfoil, 
which is modeled as an elastic structure. Different cases in fluid-structure interactions are studied. 
Firstly, we examine the case where the airfoil has only a single-plunge-degree-of-freedom and we 
investigate the galloping instability phenomena. Then, the airfoil can just pitch about the mid-cord 
or the quarter-cord where the steady instability called divergence occurs. Finally, the airfoil motion 
consists in plunging and pitching. In this case the torsion-plunge coupled instabilities-flutter are 
simulated. For these fluid elastic instability problems, we show that the results produced by the 
proposed solution method are in excellent agreement with those predicted numerically as well as 
with experimental data. 
 
Keywords:  fluid-structure interaction, fluid-elastic instability, and unsteady finite-volume 
numerical simulation. 
 
1. INTRODUTION  
 

During the past two decades, considerable research has been conducted into the problem of 
unsteady aerodynamics of an oscillating airfoil. Most of previous research efforts in this area was 
directed to unsteady wing loading associated with dynamic stall phenomenon, as reviewed by 
McCroskey (1988), Carr (1988) and Gad-el-Hak (1987). McCroskey et al (1976) performed 
extensive experimental investigations of unsteady, two-dimensional subsonic flows over oscillating 
airfoils. 
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 In these investigations, it has been pointed out that unsteady flowfields around pitching airfoils 
experiencing the dynamic stall phenomenon are characterized by massive recirculating regions and 
numerical simulations can only be achieved by solving the Navier-Stokes equations with a 
turbulence model.  

In this study, we investigate the influence of the aeroelastic parameters that characterize the 
airfoil, in an incompressible flow. A finite volume method is used to solve the Reynolds-Averaged-
Navier Stokes equations (RANSE). A second-order accurate three-level fully implicit time scheme 
is used with the strong coupling between the fluid flow calculation and the dynamic response of the 
airfoil. 

    
2. OUTLINE OF COMPUTATION TECHNIQUE  
 
2. 1 FLUID FLOW SIMULATION  
 

The unsteady, incompressible motion of viscous fluid is governed by the familiar continuity and 
the Reynolds averaged Navier-Stokes equations, in conjunction with the isotropic turbulent 
viscosity hypothesis. The eddy viscosity, which relates the Reynolds stresses to the corresponding 
mean rates of strain, is calculated using the two-layer k-ε  model of Frank et al. (1991).  The 
governing equations in the general moving co-ordinates )i(x , using physical contra-variant velocity 
components )(iV , may be written in the following general tensor form: 
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Where:  stands for velocity components, turbulent kinetic energy k, its dissipation, and in the case 
of the continuity equation, unity.  

Ψ

ΨΓ  is the coefficient of total diffusion, and  is the source term pertaining to particular variables. ΨS
)( j

rV  is the relative velocity: V , where the grid velocity V  satisfy the space 
conservation law in order to take into account the change in time of the co-ordinate system. Details 
of the origin and the way of incorporating this additional equation can be found in Mounsif (1992). 
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 The transport equations (1) are discretized by employing the finite volume method and a 
fully implicit temporal differentiation. The normal derivative diffusion terms are approximated by a 
central difference scheme with the cross-derivatives being treated as an additional source. For the 
convective terms, a third-order “QUICK”(Quadratic Upstream Interpolation for Convective 
Kinematics) scheme is employed. Details of the present fluid flow computation and results are 
discussed by Mounsif (1992) and Mounsif et al.  (1995, 1997). 
 
2. 2 AEROELASTIC MODEL 
 

 
Figure 1. Aeroelastic Structural Model 

 



 

 
The dynamic response of the elastic airfoil under the effect of the fluid flow is modeled as 

an elastic rigid structure using a two-degree-of-freedom spring/mass system Fig.  (1). The airfoil 
can translate or/and rotate (simulation of the bending and twisting of wing). The equations 
governing this motion (Blevins, 1977) are: 
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Where h is the vertical displacement, α  is the geometric angle of attack, m is the airfoil mass per 
unit span,  is the mass static moment,  is the mass moment of inertia,  and  are the 
spring stiffness coefficients and  and  are the structural damping coefficients. L is the net 
applied aerodynamic force in the vertical direction, while M is the net applied aerodynamic pitching 
moment and α  is the initial incidence. The natural frequencies in pitch and plunge are 
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represents the critical damping level and is equal to 
critD

0mKh2  for the vertical axis and αα IK2  
for the pitch axis. The system (2) is transformed to the non-dimensional form: 
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With:   mcSx αα =  and 22 mcIr αα =  
 

The system of equations (3) is integrated in time using a fourth-order Runge-Kutta 
algorithm. The integration takes place immediately after the calculation of aerodynamic coefficients 
in the main algorithm and proceeds from time tt   to  t ∆+ . The linear and angular accelerations 
obtained are then returned to provide update values for the aerodynamic calculations. 

  
3. NUMERICAL RESULTS  
 
3.1 DYNAMIC-STALL  
 
 The NACA0012 airfoil is considered in oscillatory motion at the quarter of chord, and the 
time dependent angle of attack is defined as: 
 

)2cos(0
∗α∆+α=α kt                      (5) 

Where k  is the reduced frequency and ∗t  the non-dimensional time ctU ∞
∗t = , defined from de 

chord c of the airfoil. The reduced frequency represents the ratio of tow time scales: one imposed by 
the pitching motion  and the other by the free-stream velocity 1)2( −πf ∞Uc 2 , so 

∞= Uk 22πfc . The case considered is a NACA0012 airfoil undergoing oscillatory pitch with the 

following parameters: °=α 150 , °=α∆ 10 , 15.0=k  and 610=eR , the Reynolds number, 
based on the airfoil chord. This case corresponds to the deep-stall case of experimental data of 
McAlister et al., (1982).  



 

The time history of the lift coefficient is presented in Fig. (2). As it is seen, the details deep-
stall hysterisis loops measured in experiments are captured by the present computations. 
Quantitative differences do exist but are all within the uncertainty bounds of the experimental study. 

During the upstroke, the computed lift coefficient increases linearly until the leading-edge 
vortex forms (see Fig. (3)). The formation of the trailing-edge vortex then causes a steep increase in 
the lift. At the maximum incidence, the flow flied changes rapidly and the dynamic stall vortex 
separates from the airfoil near the leading. As a result of burst of the bubble at the trailing edge and 
the shedding of clock-wise vorticity, the lift drops drastically. The overestimation of the lift 
coefficients due to over-prediction of the trailing-edge vortex suction, in the computations may be 
attributed to the poor performance of the turbulence model in the wake region.  
 During the downstroke, following the shedding of the trailing edge vortex, the lift initially 
decreases rapidly. As the flow reattaches at the trailing edge and as the secondary vortex structures 
develop, the lift curve flattens. The minimum lift is observed at  just before the flow 
attaches fully on the upper surfaces. In the experiments, reattachment occurs later and the minimum 
lift is realized at . The early reattachment of the boundary layers in the computed 
results as compared to the experimental data, may be attributed to the fully turbulent flow 
assumption. The development of the leading-edge suction then drives the lift toward the steady –
state values. However, the low pressure aft of the midchord on the upper surface delays the 
recovery process until 
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Figure 2.  Dynamic stall: Hysteresis loops 
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Figure 3.  Instantaneous st
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Figure 4a. Plunging displacements 
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Figure 4b. Plunging displacements 
0.10 =m , π=ω 2h , 0.1=ζ  

 

 

    
Figure 5a. Plunging displacements: 
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Figure 5b. Plunging displacements 
0.100 =m , π=ω 2h , 0.0=ζ

 
With a damping coefficient 5.0=ζα

0.100 =m
, the motion shows a chaotic behavior with a mass 

.  Then, with a mass , the motion is stable and we find the aerodynamic 
coefficients of the fixed airfoil. With a damping coefficient 

0.10 =m
0.1=ζα , the motion is periodic (see 

Fig. (9)), while a mass m  corresponds to a stable condition. Then, the frequency 0.100 = π=ωα 2  

is chosen with a mass . If the damping coefficient is zero, the motion is periodic (see 
Fig. (10)), and with 

0.100 =m
5.0=ζα  the motion is stable. With a zero damping coefficient, the incidence 

variation is weaker than the cases where the frequency is π=ωα 2 . 

At : with a zero damping a mass 0.10=αI 0.10 =m , the phase 2π=ωα  corresponds to the 
neutrally stable condition (see Fig. (11)). The phase plane plots of the pitching velocity vs. the 
incidence and the FTT spectrum (see Fig. (12) and Fig. (13)), verify that this motion is dominated 
by a simple harmonic motion witch have a period 55.4=T . If the mass higher ( ), the 
motion is neutrally stable and the period is 

0.100 =m
0.1=T . For this frequency, the amplitude variation of 

the pitching oscillation is again weaker than those of case where 0.1=αI , and m . 0.10=0



 

                            
Figure 6. Pitching rotations , 0.1=αI
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Figure 7.  Phase plane plot of the pitching 
velocity vs. the incidence 

 

            
 
Figure 8.  FFT period spectrum of the 

pitching rotation 
Figure 9.  Pitching rotations 0.1=αI , 

2π=ωα  0.10 =m 0.1=ζα

 

                        
Figure 10. Pitching rotations , 
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Figure 11. Pitching rotations  0.10=αI
2π=ωα  0.10 =m 0.0=ζα

 



 

                         
Figure 12. Phase plane plot of the pitching 

velocity vs. the incidence 
Figure 13. FFT period spectrum of the 

pitching rotation

3.2.3 PLUGING and PITCHING  
 
 The motion of the NACA 0012 consists in coupled torsion-plunge vibration about a mid-
chord axis. With a single plunging degree-of-freedom, the motion with m  is unstable, so 
only the case  is analyzed. 

0.10 =
0.100 =m

 
3.2.3.1 Case 1: ω and h 2/π= 0.0=ζ h     

Firstly, we consider a moment of inertia 0.1=αI  and a zero damping coefficient. With a 

pitching frequency 
2
π

=ωα , the dynamic response until 200=∗t  presents beatings that disappear 

when the plunging displacement and the pitching incidence grow (see Fig. (14)). If the pitching 
frequency is higher (ω ), the response for plunging displacement tends towards a fixed 

position , while the response of the pitching rotation is oscillating with a period 

π2=α
310−2.7=h

0.1=T  (see Fig. (15)). Secondly, we consider a moment of inertia  and a pitching 
frequency 

0.10=αI
2π=ωα . With a zero pitching damping coefficient, the dynamic response of the 

plunging and the pitching incidence are unstable (see Fig. (16)). The magnitudes of oscillations are 
weaker than the case where .  0.1=αI

                         
Figure 14.  Plunging-Pitching , 

, 
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Figure 15.  Plunging-Pitching 
0.100 =m , 0.1=αI , π=ω=α 2hω  

 



 

                           
Figure 16.  Plunging-Pitching , 
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Figure 17.  Plunging-Pitching , 0.100 =m
0.1=αI , 2π=ω=ωα h , 0.01.0 == αζζ h  

 
3.2.3.2 Case 2: and h 2π=ω 1.0=ζ h     
 

For this case, we choose a moment of inertia 0.1=αI , a pitching frequency ω  and a 
zero pitching damping coefficient. Dynamic responses of the plunging and the pitching rotation are 
oscillating (see Fig. (17)).  

 2/π=α

We don’t have the beating phenomenon that is present when the plunging damping coefficient is 
zero. The period of the plunging displacement and the pitching incidence is identical, 55.4=T . 
 
3.2.3.3 Case 3: ω and h π= 2 0.0=ζ h     
  
 We consider a moment of inertia 0.1=αI  and a pitching frequency . A zero 
pitching damping coefficient corresponds to a neutrally stable condition (see Fig. (18)).  

 2/π=ωα

 The magnitude of the incidence is similar to those where the plunging frequency is 2π=ωh , 
but the magnitude of the plunging displacement is weaker. If the pitching damping coefficient is 

1.0=ζα , the dynamic responses are no more neutrally stable  (see Fig. (19)).

 

Figure 18. Plunging-Pitching , 

, 
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Figure 19.  Plunging-Pitching , 0.100 =m
0.1=αI , 2π=2 , ωπ=ω αh

    
 



 

4. CONCLUDING REMARKS  
 

The unsteady flowfields around large amplitude oscillating airfoils have been simulated 
numerically with the intention to evaluate the ability of our computational code to predict unsteady 
flows with fluid-structure interactions. The computed unsteady flowfields and aerodynamic loads 
for the case presented in this paper agreed well with the experimental data. Massive recirculating 
regions, the formation and convection of large vortex structures, and details of the dynamics stall 
phenomenon have been identified. The full viscous flow analysis of the NACA 0012 airfoil has 
shown that the dynamics of the leading-edge vortex has a dominant effect on the dynamic stall 
behavior. The response results obtained for a single degree of freedom system of plunging for an 
airfoil with  are unstable. With a mass 0.10 =m 0.100 =m , we don’t find neutrally stable 
conditions but only stables solutions. When the airfoil pitches about the mid-chord, the response 
results obtained are often neutrally stables. In this case, the motion is dominated by a single 
harmonic motion. When the airfoil plunges and pitches about the mid-chord, the pitching motion is 
dominated by a single harmonic motion while the plunging motion is a single non-harmonic 
motion. 
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