A CURVA MESTRA E O CONCEITO DE TEMPERATURA DE REFERÊNCIA PARA AJUSTAR OS VALORES DE TENACIDADE À CLIVAGEM NA REGIÃO DE TRANSIÇÃO DOS AÇOS FERRÍTICOS

Carlos Alexandre de J. Miranda

IPEN-CNEN/SP, Travessa R, 400. 05508-900, S. Paulo, SP, Brasil. E-mail: cmiranda@net.ipen.br

Resumo

Na região de transição dos aços ferríticos, praticamente cada ensaio de um mesmo material, geometria e tamanho de corpo de prova e temperatura de ensaio (T), fornece um valor diferente para J_c, dentro de uma larga faixa. Isto ocorre mesmo quando os CPs atendem aos requisitos de tamanho das normas específicas, impostos para garantir a independência dos resultados medidos (J ou K) com o tamanho e a geometria. Para tratar este grande espalhamento dos resultados se torna necessário o tratamento estatístico dos mesmos. Com a chamada Curva Mestra, e a sua Temperatura de Referência – T_o, e com o uso da distribuição estatística de Weibull de três parâmetros, é possível descrever o comportamento dos valores "K_{Jc} versus T" medianos na transição. Existe um método, para determinar T_o, baseado em um único conjunto de valores K_{Jc} "válidos", medidos em uma temperatura T e associados a espessura "unitária". Neste trabalho se faz uma revisão dos conceitos e princípios básicos desta Curva Mestra, e são, também, apresentados exemplos de aplicação desta Curva Mestra a diversos aços ferríticos mostrando que, com a mesma, os dados se ajustam muito bem na transição.

Palavras-chave: Mecânica da Fratura, Transição, Curva Mestra, Temperatura de Referência, Tratamento Estatístico.

1. INTRODUÇÃO

Nos aços ferríticos a curva de variação da tenacidade com a temperatura apresenta dois patamares. No patamar inferior a fratura ocorre por clivagem e no patamar superior, onde o nível de plastificação é significativo, a fratura ocorre de forma dúctil, precedida pelo crescimento estável da trinca ou por colapso plástico. Entre os dois patamares há a chamada região de transição entre os regimes de fratura frágil e de fratura dúctil onde é comum que a fratura súbita por clivagem ocorra após algum crescimento dúctil da trinca e/ou após uma significativa plastificação na ponta da trinca.

Nesta região é usual medir (e trabalhar com) valores de integral J no momento da clivagem – J_c : a força motriz da trinca, no momento da clivagem, ou tenacidade à clivagem. Em certas situações torna-se vantajoso trabalhar com valores do fator intensidade de tensão K equivalentes aos valores J_c (K_{Jc}).

Na transição, praticamente cada ensaio de um mesmo material, geometria e tamanho de corpo de prova (CP) e temperatura de ensaio (T), fornece um valor diferente para J_c , dentro de uma larga faixa cuja amplitude varia com a temperatura. Isto ocorre mesmo quando os CPs

atendem aos requisitos de tamanho das normas específicas, impostos para garantir a independência dos resultados (J ou K) medidos com o tamanho e a geometria. Desta forma, na transição, não é possível definir um parâmetro único que caracterize, de forma unívoca, o estado de tensões na ponta da trinca.

A razão deste grande espalhamento é uma combinação de fatores tais como: influência do evento disparador da clivagem (na região de transição predomina o elo-mais-fraco), distribuição de imperfeições e/ou impurezas na matriz do material ensaiado (o que determina o tratamento estatístico), influência da geometria e tamanho do corpo de prova (traduzida pelo nível de restrição à plasticidade na ponta da trinca), etc. A faixa de valores J_c medidos é ainda maior no caso de se utilizar corpos de prova pequenos (B<1T) que apresentam, também, valores J_c médios maiores do que os valores médios obtidos com CPs grandes. Isto causa uma dificuldade adicional para a utilização destes CPs, principalmente Charpy pré-trincados.

Neste trabalho se descreve o procedimento, norma E1921 [ASTM 1997], para obtenção da temperatura de referência (T_o) que define a Curva Mestra que ajusta os valores K_{Jc} medianos, associados a espessuras unitárias, na região de transição entre os regimes de fratura frágil e de fratura dúctil dos aços ferríticos. O cálculo de T_o é aplicado para diversos conjuntos de valores de K_{Jc} obtidos a partir de vários materiais ensaiados em várias temperaturas, na transição, com várias geometrias e tamanhos de corpos de prova, inclusive corpos de prova pequenos.

Através dos exemplos é mostrado que a Curva Mestra, com o seu conceito de temperatura de referência, ajusta muito bem os dados na região de transição, podendo ser uma ferramenta importante para caracterizar o comportamento à fratura de um material de uma estrutura ou equipamento quando, por algum motivo (ou imposição de norma de projeto) o mesmo tiver que ser analisado nesta região.

2. TRATAMENTO ESTATÍSTICO - DISTRIBUIÇÃO DE WEIBULL

Valores de K (K_{Jc}), equivalentes a J (J_c), podem ser obtidos através da eq. (1) onde E' = E para estado plano de tensões e E' = E/($1-v^2$) para estado plano de deformações, sendo E o módulo de elasticidade e v o coeficiente de Poisson do material.

Entre as diversas distribuições disponíveis a que se mostrou mais adequada para tratar os dados (J_c ou K_{Jc}), medidos na transição, foi a distribuição estatística de Weibull cuja formulação original, de 2 parâmetros que devem ser obtidos por ajuste, é baseada no princípio de que uma corrente se rompe sempre no seu elo mais fraco e que quanto maior a corrente maior será a probabilidade de se ter uma elo-mais-fraco.

A distribuição original apresentava alguns inconvenientes e foi adaptada várias vezes. A versão atualmente adotada, utilizando valores K_{Jc} , é a chamada distribuição de Weibull modificada de 3 parâmetros, eq. (2.a) onde $P_{f,i}$ é a probabilidade acumulada de ocorrer fratura por clivagem para um valor K igual ou inferior a $K_{Jc,i}$.

Para $P_{f,i}$ é usual adotar a eq. (2.b). K_{min} é um valor limiar do fator intensidade de tensão abaixo do qual a probabilidade de ocorrer fratura por clivagem é nula (ou desprezível) e K_o é um fator de ajuste associado a 63% de probabilidade de fratura. N é a quantidade disponível de valores K_{Jc} a serem ajustados pela expressão (2.a) e i é a posição ou ordem de um dado valor $K_{Jc,i}$ no conjunto de valores obtidos nos ensaios, após os mesmos serem ordenados crescentemente. Esta é a distribuição adotada pela norma ASTM E1921 no tratamento dos dados na transição, como será visto em detalhes mais adiante.

$$K = \sqrt{J E'} \tag{1}$$

$$1 - P_{f,i} = \exp\left(-\left[\frac{K_{Jc,i} - K_{\min}}{K_o - K_{\min}}\right]^m\right) \quad (2.a) \qquad \qquad P_{f,i} = \frac{i - 0.3}{N + 0.4}$$
 (2.b)

Em princípio os três parâmetros (m, K_{min} e K_o) deveriam ser obtidos por um processo de ajuste simultâneo. Foi mostrado por Wallin [1984, 1985], por meio de um modelo estatístico microestrutural, e com uma análise envolvendo um grande número de conjuntos de dados experimentais, que o expoente m tende para o valor constante 4 a medida que o número de resultados experimentais aumenta. Wallin [1984] também mostrou, por meio de simulações numéricas, que o parâmetro K_{min} deveria estar entre 10 e 20 MPa \sqrt{m} . Em trabalho posterior Wallin [1993] sugere que seja adotado o valor $K_{min} = 20$ MPa \sqrt{m} .

Adotando-se, como indicado na norma ASTM E1921 [1997], $K_{min} = 20 \text{ MPa}\sqrt{m}$ (independente da temperatura de ensaio e do material) e m = 4, o parâmetro K_o é o único que resta na eq. (2.a) para ser determinado por um processo de ajuste. Em princípio este parâmetro pode ser determinado por qualquer método que seja conveniente. A norma E1921 adota a expressão (3) oriunda do "maximum likelihood method", onde r é a quantidade de valores K_{Jc} válidos.

São válidos aqueles valores K_{Jc} que sejam inferiores ao valor $K_{Jc,limite}$ dado pela eq. (4) onde b_o (=W-a) é o ligamento remanescente do corpo de prova, σ_{ys} é o limite de escoamento do material na temperatura de ensaio e M=30. O valor de M foi estabelecido de tal forma que não seja grande a discrepância entre o valor de M calculado na ensaio ("far field M") e o valor teórico existente na ponta da trinca ("near crack-tip M"). Esta condição limita severamente a temperatura de ensaio para os corpos de prova pequenos. A norma ainda tem outros critérios para definir a validade de um ensaio, entre os quais: o crescimento dúctil da trinca deve ser inferior a 5% do ligamento remanescente (b_o) e, o tamanho inicial da trinca, a, deve ser tal que 0.45 < a/W < 0.55, onde M é a largura do corpo de prova.

$$K_{o} = \left(\frac{\sum_{i=1}^{N} \left(K_{Jc,i} - K_{\min}\right)^{m}}{r - 0.3068}\right)^{\frac{1}{m}} + K_{\min}$$
(3)

$$K_{Jc,limite} = \sqrt{\frac{\sigma_{ys} E b_o}{M}}$$
 (4)

Uma vez que o valor K_o seja conhecido, e utilizando a eq. (2.a) com $P_f = 0.5$, isto é: 50% de probabilidade de fratura, o valor mediano da distribuição de tenacidade à clivagem em uma dada temperatura, $K_{Jc,med}$, pode ser obtido – eq. (5). Plotando os valores K_{Jc} em um gráfico $ln(ln(1-P_f))$ x $ln(K_{Jc}-K_{min})$ tem-se uma reta de inclinação m, fig. 1, que é chamado gráfico de Weibull. O expoente m, portanto, está associado com o espalhamento dos dados: para m grande (pequeno) tem-se um pequeno (grande) espalhamento.

$$K_{Jc,med} = (K_o - K_{min}) * 0.9124 + K_{min}$$
 (5)

3. CURVA MESTRA

Wallin [1991] propôs uma expressão (Curva Mestra), eq. (6.a), para descrever o

comportamento mediano dos valores K_{Jc} ($K_{Jc,med}$) dos aços ferríticos ensaiados na transição, e associados a um valor "unitário" de espessura (B=1T=25.4mm), em função de um único parâmetro: a temperatura de referência (T_o), definida de modo que $K_{Jc,med}=100$ MPa \sqrt{m} quando $T=T_o$, isto é, quando o ensaio é realizado na temperatura de referência. A forma desta Curva Mestra é fixa e independentemente da geometria, tamanho do corpo de prova ensaiado, da composição química, do tratamento mecânico do material e tensão de escoamento do material. A mesma também não é afetada pelo envelhecimento térmico nem pelo nível de irradiação neutrônica sofrido pelo material. Estes efeitos não alteram a forma da curva, apenas a deslocam (i. e: mudam o valor de T_o).

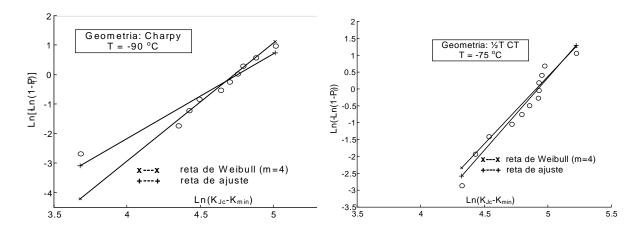


Figura 1. Gráficos de Weibull, aço "CAJM" A508cl3

Este parâmetro T_o está sendo adotado pela ASME como alternativa ao parâmetro RT_{NDT} [Kirk et al., 1999] para indexar os valores K_{Jc} utilizados no projeto de reatores nucleares, como consequência da robustez da sua formulação, comprovada em diversos trabalhos [Kirk e Lott, 1998, Natishan e Kirk, 1999].

$$K_{Jc,med} = 30 + 70e^{0.019(T-T_o)}$$
 (6.a) $T_o = T - \frac{1}{0.019} \ln \left[\frac{K_{Jc,med} - 30}{70} \right]$ (6.b)

4. PROCEDIMENTO PARA CALCULAR T₀ SEGUNDO A NORMA ASTM E1921-97

A norma ASTM E1921-97 [1997] estabelece o procedimento para calcular T_o a partir de N valores K_{Jc} obtidos **em uma mesma temperatura** T, e supondo que existam pelo menos 6 valores válidos associados a espessura "unitária".

A determinação de T_o é feita do seguinte modo: inicialmente se aplica a eq. (3) para se obter o parâmetro K_o . Em seguida, se aplica a eq. (4) para obter o valor mediano $(K_{Jc,med})$ da distribuição dos N valores K_{Jc} . Com a determinação de $K_{Jc,med}$, para uma temperatura T, temse o valor da temperatura de referência T_o a partir da eq. (6.b) que é a eq. (6.a) escrita em ordem reversa. Assim, todo o comportamento mediano da tenacidade à clivagem $(K_{Jc,med})$ com a temperatura passa a ser conhecido. Note-se, entretanto, que a Cura Mestra não define o fim da transição e que não é possível tratar os conjuntos que apresentem $K_{Jc,med} \le 30 \text{ MPa}\sqrt{m}$.

4.1 Tratamento de valores K_{Jc} oriundos de corpos de prova com B \neq 1T.

O tratamento estatístico dos dados na transição, bem como a própria Curva Mestra, é

baseado no princípio do elo-mais-fraco. O nível de restrição à plasticidade, entendido como restrição à deformação plástica ("constraint"), ou simplesmente restrição, existente na ponta da trinca, também contribui para o grande espalhamento dos resultados na transição. Entretanto, resultados experimentais e modelos metalúrgicos mostram que há um efeito absoluto da espessura nos valores de tenacidade à clivagem medidos que não está relacionado com o nível de restrição existente na geometria ensaiada mas sim com o princípio do elomais-fraco.

Este efeito foi quantificado por Wallin [1984, 1985] através da eq. (7), considerando uma distribuição aleatória de defeitos microestruturais e de variações metalúrgicas no material à frente de uma trinca. Esta eq. serve para uniformizar, para uma mesma espessura (B_{1T}), os valores de tenacidade à clivagem, expressos em termos do fator K (K_{BxT}), obtidos com corpos de prova de outra espessura (B_{xT}). Está implícito que a falha ocorre por clivagem sem crescimento dúctil da trinca. Esta expressão, baseada no princípio do elo-mais-fraco, é adotada pela norma ASTM E1921-97 para corrigir os valores K_{Jc} obtidos com corpos de prova que tenham espessura diferente de 1T, antes de aplicar o procedimento para calcular T_o.

$$K_{B1T} = K_{\min} + (K_{BxT} - K_{\min}) \left(\frac{B_{xT}}{B_{1T}}\right)^{\frac{1}{4}}$$
 (7)

4.2 Espalhamento dos Dados.

Utilizando-se expressões semelhantes a aquela da Curva Mestra mediana ($P_f = 50\%$) é possível obter os valores dos coeficientes necessários para definir curvas-limite 'mínimas' ("lower bounds") associadas a 1%, 2%, 3%, 4%, 5%, e 'máximas' ("upper bounds") associadas a 95%, 96%, 97%, 98%, 99% de probabilidade de fratura [ASTM, 1997]. Como exemplo são apresentadas as curvas associadas a 5%, $K_{Jc(0,05)}$, e a 95%, $K_{Jc(0,95)}$, de probabilidade de fratura, eq. (8.a) e (8.b). Com a adoção destas curvas-limite é possível estabelecer uma faixa de espalhamento dos dados (tenacidade à clivagem) em cada temperatura, associada a um valor de probabilidade de fratura previamente escolhida.

$$K_{Jc(0.95)} = 34.6 + 1022 e^{0.019(T - T_o)}$$
 (8.a)

$$K_{Jc(0.05)} = 25.4 + 37.8 e^{0.019(T - T_o)}$$
 (8.b)

5. EXEMPLO DE CÁLCULO DE T_o PELA NORMA ASTM E1921-97

Valores de T_o foram obtidos para vários conjuntos, totalizando mais de 400 valores de tenacidade à clivagem, associados a vários materiais, geometrias, tamanhos e temperaturas. Incluindo os valores apresentados em [Miranda, 2000], medidos no âmbito do programa experimental desenvolvido para uma pesquisa [Miranda, 1999] com o aço nuclear nacional A508 classe 3 identificado como "CAJM" A508cl3. Na tabela 1 tem-se algumas informações dos materiais e respectivos conjuntos de valores de tenacidade à clivagem, apresentados nas figuras 2 e 3, e como identificá-los. Na figura 4 os valores K_{Jc} são apresentados juntamente com a Curva Mestra e as curvas associadas a $P_f = 5\%$ e a $P_f = 95\%$.

As principais informações como quantidades de resultados válidos, além de parâmetros intermediários para se chegar nos valores de T_o associados ao material "CAJM" A508cl3, são apresentados em outro trabalho [Miranda, 2000].

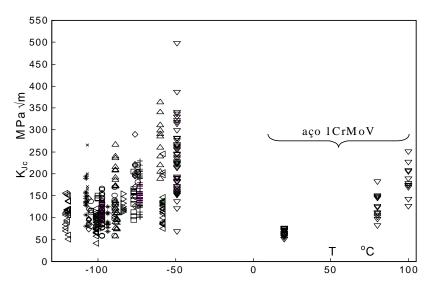


Figura 2. Resultados Brutos (Não Ajustados Para 1T) Inclui o Aço 1CrMoV

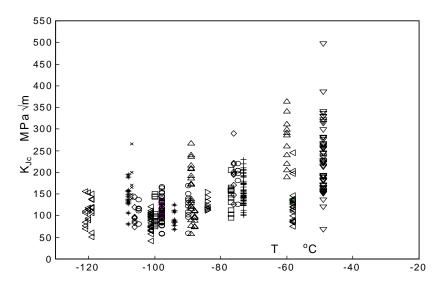


Figura 3. Resultados Brutos (Não Ajustados Para 1T) NÃO Inclui o Aço 1CrMoV

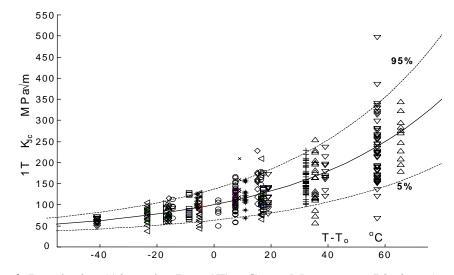


Figura 4. Resultados (Ajustados Para 1T) e Curva Mestra com Limites 5% e 95%

Tabela 1. Identificação dos materiais incluídos nas figuras 2, 3 e 4.

Origem	T (°C)	Quantidades	Símbolo	Geometria
"CAJM"	-75 / -100	12 / 12		½T CT
A508cl3	-75 / -106	9 / 8	\Diamond	0.394T SENB
	-75 / -90 / -106	6 / 10 / 6	O	Charpy
	-50	50	∇	
JSPS/MPC	-75	55	+	1T CT
A508 cl3	-100	50	O	
	-85	9	*	Charpy
[Ito, 1998]	-95	9	\triangleright	Charpy
(ver tabela 3)	-95	9	Δ	0.4T CT
	-106	6	X	0.394T SENB
A508 cl3	-106 / -120	12 / 22	* <	Charpy
1CrMoV	20 / 80 / 100	16 / 13 / 11	∇	CT (B=20mm)
20MnMoNi55	-60 / -90	11 / 16	Δ	CT
A470 NiCrV	-60 / -100	27 / 28		½T CT

6. CÁLCULO DE T₀ MULTI-TEMPERATURA - EXEMPLOS

Kirk et al. [1999], citando trabalho de Wallin [1995], apresentam a eq. (9) para a determinação de T_o , a partir de valores K_{Jc} obtidos em diversas temperaturas e convertidos para espessura "unitária", que deve ser resolvida de forma iterativa.

Nesta eq. (9), T_i é a temperatura de teste associada a $K_{Jc,i}$, a=31 MPa \sqrt{m} , b=77 MPa \sqrt{m} e c=0,019 °C⁻¹. $K_{Jc,i}$ é o menor entre o *i-ésimo* valor K_{Jc} medido e o valor $K_{Jc,limite}$. $\delta_i=1$ se $K_{Jc,i}$ é "válido" e $\delta_i=0$ em caso contrário. Esta metodologia, utilizando resultados obtidos em diversas temperaturas para calcular T_o ainda não faz parte da norma E1921 [ASTM 1997]. Adotando-se esta eq. não há perdas porque todos os valores K_{Jc} são utilizados no cálculo de T_o independente da quantidade disponível em cada temperatura.

Em coerência com a norma ASTM E1921 [1997], sugere-se que haja o número mínimo de 6 valores experimentais válidos.

Utilizando-se os valores K_{Jc} apresentados por Miranda [1999] e os os valores K_{Jc} indicados na tabela 2 [Ito, 1998] onde as geometrias ensaiadas têm a/W = 0.5, na tabela 3 são apresentados dois exemplos de cálculo de T_o a partir de valores (K_{Jc}) obtidos em diversas temperaturas.

$$\sum_{i=1}^{N} \frac{\delta_{i} \cdot \exp[c(T_{i} - T_{o})]}{a - K_{\min} + b \cdot \exp[c(T_{i} - T_{o})]} - \sum_{i=1}^{N} \frac{(K_{Jc,i} - K_{\min})^{4} \cdot \exp[c(T_{i} - T_{o})]}{\{a - K_{\min} + b \cdot \exp[c(T_{i} - T_{o})]\}^{5}} = 0$$
(9)

Tabela 2. Valores de K_{Jc} [Ito, 1998]

Geometria	T (°C)	K_{Jc} (MPa \sqrt{m})			
Charpy	-85	112.7, 117.8, 154.3, 121.4, 132.2, 124.8, 115.6, 141.8, 112.7			
Charpy	-95	90.0, 84.5, 111.8, 84.6, 124.8, 108.8, 68.5, 87.5, 78.3			
0.4T CT	-90	73.8, 74.5, 111.5, 88.5, 97.8, 95.9, 109.8, 95.8, 111.5			

Tabela 3. T_o (em °C) Multi-Temperatura

		T	# de valores K _{Jc}	T_{o}	T _o Multi-
Material	Geometria	(°C)	total / inválidos	E1921/97	Temperatura
		-75	12 / 1	-90.7	-89.7
	¹⁄2T CT	-100	12 / 0	-94.8	-94.4
"CAJM"		2 conjuntos	24 / 0	-92.7 ¹	-92.0
A508		-75	6/5	[-109.6]	[-129.7]
classe 3	Charpy	-90	10 / 2	-92.9	-91.2
		-106	6/0	-99.6	-98.8
		3 conjuntos	22 / 7	-96.1 ¹	-100.9
		-75	9/6	[-112.2]	[-107.5]
	SENB	-106	8 / 0	-90.5	-90.0
		2 conjuntos	17 / 6	-90.5	-101.6
	Todas	Todas (7)	63 / 14	-93.1	-98.0
	Charpy	-95	9/0	-74.7	-74.6
[Ito, 1998] tabela 3	Charpy	-85	9/3	-86.6	-84.4
	0.4T CT	-90	9/0	-69.5	-69.6
1		3 conjuntos	27 / 3	-76.9 ¹	-77.0

¹ – valor médio

7. DISCUSSÃO E CONCLUSÕES

O princípio da Curva Mestra é baseado em 3 premissas básicas: (1) os efeitos de tamanho são devidos ao princípio do elo-mais-fraco (serve para normalizar os valores de tenacidade à clivagem para uma espessura "de referência" ou unitária). (2) a distribuição de Weibull, com o expoente m=4, serve para descrever/ajustar os valores medidos para todos os aços ferríticos e, (3) uma única expressão serve para descrever toda a transição.

Os exemplos apresentados, resumidos nas figuras 1 a 3, corroboram a validade da Curva Mestra em ajustar valores de tenacidade à clivagem medidos na transição, inclusive com corpos de prova pequenos, como os Charpy pré-trincados. Em particular, ao se comparar as figuras 1 e 3 se percebe, com nitidez, a vantagem em se utilizar uma ferramenta como a Curva Mestra, e a temperatura T_0 , para indexar os valores de tenacidade à clivagem medidos na transição.

Quanto à formulação multi-temperatura, observa-se que os valores de T_{o} associados a conjuntos formados só por valores K_{Jc} "válidos" praticamente não se alteram quando comparados com os respectivos valores utilizando-se o procedimento da norma ASTM E1921-97.

8. REFERÊNCIAS

ASTM E1921-97, 1997. Test Method for Determination of the Reference Temperature, T_o, for Ferritic Steels in the Transition Range. American Society for Testing and Materials, Philadelphia, PA.

Ito, H. L., 1998. Informação pessoal. Dados ainda não publicados.

- Kirk, M. T., Lott, R., 1998. *Empirical Validation of the Master Curve for Irradiated and Un-Irradiated Reactor Pressure Vessels*. In: 1998 ASME/JSME Pressure Vessel and Piping Conference, July 27-30, San Diego, CA.
- Kirk, M. T.; Lott, R.; Server, W.; Rosinski, S. 1999. *Initial Reference Temperature and Irradiation Trend Curves for Use with RT*_{To}, a Preliminary Assessment. In: 1999 ASME Pressure Vessel and Piping Conference, August 2-5, Boston, MA.
- Miranda, C. A. J. M., 1999. Obtenção da Tensão de Clivagem e Nível de Confiabilidade na Determinação da Temperatura de Referência de Aços Ferríticos na Transição: Abordagem Numérica e Experimental. Tese de doutorado, Set/1999, IPEN/USP, São Paulo, SP.
- Miranda, C. A. J. M., 2000. *Medidas Experimentais de Tenacidade à Clivagem com Corpos de Prova Pequenos na Região de Transição e Obter a Curva Mestra*. Anais do Congresso Nacional de Engenharia Mecânica (CONEM 2000), 07-11/Agosto, Natal, RN.
- Natishan, M. E.; Kirk, M. T., 1999. *A Physical Basis for the Master Curve*. In: 1999 ASME Pressure Vessel and Piping Conference, August 1-5, Boston, MA.
- Wallin, K., 1984. *The Scatter in K_{IC} Results*, Engineering Fracture Mechanics. v. 19, p. 1085-1093.
- Wallin, K., 1985. *The Size Effects in K_{IC} Results*. Engineering Fracture Mechanics. v. 22, n. 1, p. 149-163.
- Wallin, K., 1991. Fracture Toughness Transition Curve Shape for Ferritic Structural Steels. In: Joint FEFG/ICF International Conference on Fracture of Engineering Materials, Singapore, August 6-8, p. 83-88.
- Wallin, K., 1993. Statistical Aspects of Constraint With Emphasis on Testing Analysis of Laboratory Specimens in the Transition Region. In: Constraint Effects in Fracture. ASTM STP 1171, p. 264-288, 1993.
- Wallin, K., 1995. *Re-Evaluation of the TSE Results Based on the Statistical Size Effects.* VTT Manufacturing Technology.