MEDIDAS EXPERIMENTAIS DE TENACIDADE À CLIVAGEM COM CORPOS DE PROVA PEQUENOS NA REGIÃO DE TRANSIÇÃO E OBTENÇÃO DA CURVA MESTRA

Carlos Alexandre de J. Miranda

IPEN-CNEN/SP, Travessa R, 400. 05508-900, S. Paulo, SP, Brasil. E-mail: cmiranda@net.ipen.br

Resumo

Neste trabalho são apresentados os resultados de um programa experimental envolvendo ensaios de 65 corpos de prova de mecânica da fratura com espessura B<1T = 25.4 mm, confeccionados com aço A508 classe 3 nacional, em três geometrias: $\frac{1}{2}T$ CT (corpo de prova compacto), Charpy e SENB (seção transversal de 9mm x 18mm). Os ensaios foram realizados em quatro temperaturas na região de *transição* dúctil-frágil deste material: -106 °C, -100 °C, -90 °C e -75 °C. Foram medidos os valores de tenacidade à clivagem, expressos em termos da Integral J no momento da clivagem (J_c), posteriormente transformados em valores equivalentes do fator intensidade de tensão (K_{Jc}). Todos os corpos de prova tiveram as suas dimensões e tamanhos de trinca inicial e final controladas e comparadas com os valores nominais. A partir dos resultados obtidos calcula-se a temperatura de referência (T_o) do material, a qual permite posicionar a chamada curva mestra que fornece a variação dos valores K_{Jc} (medianos associados a espessura unitária) com a temperatura, na transição.

Palavras-chave: Mecânica da Fratura, Aços Ferríticos, Resultados Experimentais, Transição, Temperatura de Referência.

1. INTRODUÇÃO

A mecânica da fratura procura caracterizar o comportamento dos materiais e estruturas que apresentam um defeito ou trinca. Isto é realizado através de um tratamento quantitativo a partir do relacionamento da resistência à fratura do material do corpo trincado com a sua geometria e carregamento aplicado. A resistência à fratura ou resistência à propagação da trinca é chamada tenacidade do material. A força motriz da trinca (FMT), associada ao carregamento aplicado, é usualmente medida pelos parâmetros Fator Intensidade de Tensão (K) ou Integral J (J). O primeiro se aplica no caso da Mecânica da Fratura Elástica Linear (MFEL) quando a plasticidade na ponta da trinca é inexistente ou muito reduzida. Neste caso quando a FMT (K) iguala um valor crítico (K_c) a fratura ocorre de forma brusca por clivagem: um súbito e instável crescimento da trinca.

Quando a plasticidade ocorre de forma que o Fator Intensidade de Tensão perde a sua validade se passa para o âmbito da Mecânica da Fratura Elasto-Plástica (MFEP) onde se utiliza a Integral J (ou o seu equivalente: CTOD, o deslocamento de abertura da ponta da trinca) como parâmetro para caracterizar o estado de tensões na ponta da trinca. Na MFEP, quando a FMT (J) iguala o valor crítico do material a trinca cresce de forma estável (dúctil)

até que ocorra a instabilidade e a conseqüente ruptura.

Os aços ferríticos apresentam uma típica curva de variação da tenacidade com a temperatura que, em baixas temperaturas apresenta um patamar bem definido onde a tenacidade varia muito pouco e a ruptura de um corpo trincado se dá por clivagem. Em altas temperaturas a curva pode ser vista como tendo um outro patamar onde a ruptura pode ocorrer pelo chamado rasgamento dúctil, ou por colapso plástico (quando, então, a estrutura deixa de ser capaz de desenvolver tensões que equilibrem as cargas externas). Entre estes dois patamares há uma região de *transição*, onde é usual se trabalhar com os dados de tenacidade à fratura, basicamente a Integral J no momento da clivagem, J_c, e é caracterizada por: (1) variabilidade do valor mediano de J_c com a temperatura; (2) possível presença simultânea dos dois mecanismos de ruptura: crescimento dúctil seguido de clivagem; (3) grande espalhamento dos resultados mesmo quando obtidos para uma só geometria, tamanho e temperatura e; (4) corpos de prova (CPs) menores apresentarem um maior espalhamento e valores medianos de J_c maiores do que os valores obtidos com CPs maiores.

O grande espalhamento dos valores medidos na transição impede a obtenção de um valor característico, i. e: um valor único de tenacidade que caracterize o estado de tensões na ponta da trinca. As características da transição tornam necessário o tratamento estatístico dos valores experimentais e tornam difícil a previsão do comportamento à fratura do material na *transição* e, principalmente, a transferência de resultados obtidos com ensaios de CPs padronizados, para as estruturas reais que estejam operando ou venham a operar na *transição*.

Wallin [1991] propôs uma expressão, para caracterizar o comportamento dos valores de tenacidade à clivagem medianos, expressos em termos do fator intensidade de tensões equivalentes (K_{Jc}), associados com CPs de espessura "unitária" (B=1T) - a chamada Curva Mestra, cuja forma é fixa e independente do material. Esta expressão é indexada pela chamada temperatura de referência, T_o , que posiciona a curva no eixo das temperaturas. A norma E1921 [ASTM 1997] apresenta um método para determinar T_o a partir de um conjunto com, no mínimo, 6 valores K_{Jc} "válidos" obtidos em uma única temperatura.

Neste trabalho são apresentados e discutidos os resultados de um programa experimental [Miranda, 1999] envolvendo ensaios de 65 corpos de prova de mecânica da fratura com espessura B<1T, na *transição*. Os corpos de prova foram confeccionados com aço nuclear A508 classe 3 sendo todos usinados em uma mesma orientação. Dois conjuntos de 12 corpos de prova ½T CT foram ensaiados a -100 °C e a -75 °C. Dois conjuntos de 9 e 8 corpos de prova SENB, com seção de 9 mm x 18 mm, foram ensaiados respectivamente a -106 °C e a -75 °C. Três conjuntos de 6, 10 e 6 corpos de prova Charpy (seção 10 mm x 10 mm) prétrincados foram ensaiados respectivamente a -106 °C, -90 °C e -75 °C. Em todos os corpos de prova foi realizado um entalhe lateral (*"side grooving"*) correspondente a 20% da espessura nominal. Estes ensaios foram realizados de acordo com a norma ASTM E1921-97 que também foi utilizada na análise dos mesmos. Os valores J_c e K_{Jc} são apresentados e, em particular, é discutida a validade do valor T_o determinado a partir dos valores K_{Jc} obtidos com corpos de prova pequenos e é estimada a temperatura máxima de ensaio destas geometrias.

2. CONTROLES DIMENSIONAIS DOS CORPOS DE PROVA ENSAIADOS

Nas figuras 1 a 6 são apresentadas as principais dimensões dos corpos de prova ensaiados e confrontadas com os seus valores nominais. Antes dos ensaios os corpos de prova foram pré-trincados para se atingir o valor desejado para a relação a/W. Após os ensaios, para cada corpo de prova, o tamanho da trinca foi medido em 9 posições cujo valor médio é o valor *a* (tamanho da trinca) a ser considerado para o corpo de prova. Para os corpos de prova Charpy e SENB, com um valor nominal a/W=0.5, se obteve, no conjunto, um valor médio a/W=0.495 e a/W=0.527 respectivamente (W é a largura do corpo de prova). Para os corpos de prova CT

ensaiados, para a/W=0.60, nominal, obteve-se um valor médio a/W=0.63. Estes valores médios de a/W mostram um bom controle do processo de pré-trincagem dos corpos de prova.

3. VALORES DE TENACIDADE À CLIVAGEM MEDIDOS

Os registros dos ensaios são do tipo apresentado na figura 7, a partir dos quais é possível calcular o valor da Integral J no momento da clivagem (J_c) que são transformados em valores

 K_{Jc} através da eq. (1) sendo E e v, respectivamente, o módulo de elasticidade e o coeficiente de Poisson do material. A norma ASTM E1921 [1997] adota o estado plano de tensões.

Os valores de tenacidade à clivagem medidos nas diversas temperaturas dos ensaios são apresentados nas tabelas 1 a 3, respectivamente para as geometrias SENB, Charpy e CT, e na figura 8. Para cada corpo de prova são indicados os valores a/W medidos após os ensaios, o número de identificação gravado no corpo de prova, os valores J_c medidos, em kJ/m², e os respectivos valores K_{Jc} equivalentes, em MPa \sqrt{m} . Os resultados da análise realizada nas superfícies de fratura, destes corpos de prova, através de microscópio eletrônico de varredura, quando se procurou identificar os pontos, chamados elos-mais-fraco, onde se iniciou a clivagem, são apresentados em outro trabalho Miranda [2000a].

O corpo de prova SENB de número 3 teve o ensaio interrompido no início por problemas de fixação do "clip gage" e o respectivo resultado, por esta razão, não é indicado. No caso do corpo de prova Charpy número 23, também houve problemas durante o ensaio, praticamente no final do mesmo. O resultado obtido é indicado mas foi descartado das análises.

Figura 7. Curvas Carga x Deslocamento dos ensaios de J_c

Т	СР		J _c	K _{Jc}	Т	CP		J _c	K _{Jc}
	#	a/W	kJ/m ²	MPa√m		#	a/W	kJ/m ²	MPa√m
-106 °C	1	0.53	36.7	87.1	-75 °C	2	0.54	236.7	221.3
	6	0.52	26.3	73.7		4	0.56	183.6	194.9
	12	0.52	43.8	95.1		5	0.53	231.7	218.9
	13	0.53	45.4	96.9		7	0.54	196.0	201.4
	14	0.53	42.1	93.4		8	0.52	105.0	147.4
	15	0.53	99.0	143.1		9	0.54	77.6	126.7
	16	0.53	69.0	119.5		10	0.53	188.6	197.5
	18	0.54	33.0	82.6		11	0.53	406.5	290.0
						17	0.52	141.2	170.9

 Tabela 1. Tenacidade à clivagem - Geometria SENB (9mm x 18mm)

Т	CP		J _c	K _{Jc}	Т	CP		J _c	K _{Jc}			
	#	a/W	kJ/m ²	MPa√m		#	a/W	kJ/m ²	MPa√m			
-75 °C	2	0.45	161.2	182.6		1	0.47	51.6	103.3			
	3	0.47	190.3	198.4		5	0.48	45.8	97.4			
	6	0.52	78.6	127.5		17	0.49	17.2	59.7			
	7	0.52	236.7	221.2		18	0.49	81.7	130.0			
	8	0.48	203.4	205.1		19	0.50	58.1	109.6			
	9	0.56	202.8	204.8	-90	20	0.48	90.1	136.5			
-106 °C	11	0.48	66.6	117.3	°C	4	0.48	73.9	123.6			
	12	0.48	61.1	112.4		10	0.50	111.8	152.0			
	13	0.53	92.4	138.2		21	0.48	95.5	140.5			
	14	0.48	66.9	117.7		22	0.47	141.4	171.0			
	15	0.48	67.0	117.7		23	(1)	> 56.4	> 108.0			
	16	0.46	32.6	82.1	(1) -	(1) – Ensaio com problemas (descartado)						

Tabela 2. Tenacidade à clivagem - Geometria Charpy

Tabela 3. Tenacidade à clivagem - Geometria $\frac{1}{2}T$ CT

Т	CP		J _c	K _{Jc}	Т	CP		J _c	K _{Jc}
	#	a/W	kJ/m ²	MPa√m		#	a/W	kJ/m ²	MPa√m
-100 °C	01	0.64	38.1	88.8		07	0.68	125.5	161.1
	02	0.63	31.8	81.2		08	0.63	120.0	157.5
	03	0.63	42.5	93.7	-75 °C	09	0.63	62.0	113.2
	04	0.64	108.3	149.7		10	0.63	203.9	205.4
	05	0.62	101.6	144.9		11	0.63	95.9	140.8
	06	0.62	46.7	98.3		12	0.64	43.9	95.2
	13	0.63	47.2	98.8		19	0.64	106.5	148.4
	14	0.63	53.5	105.2		20	0.64	52.2	103.9
	15	0.63	30.6	79.6		21	0.49	83.9	131.8
	16	0.64	27.5	75.4		22	0.63	120.4	157.8
	17	0.62	35.6	85.8		23	0.64	121.1	158.3
	18	0.64	100.1	143.9		24	0.64	131.2	164.7

Figura 8. Resultados (valores K_{Jc}) obtidos dos ensaios

3.1 Crescimento de trinca

Não foi observado nenhum crescimento estável de trinca (Δa) nos CPs Charpy ensaiados a -106 °C, e -90 °C. E menos de 0.1 mm ($<0.05b_o$) de crescimento estável de trinca foi observado em alguns CPs ensaiados a -75 °C. Nos CPs SENB ensaiados a -106 °C não foi observado crescimento de trinca e foi observado $\Delta a < 0.1$ mm ($<0.05b_o$) em alguns corpos de prova ensaiados a -75 °C. Não foi observado crescimento de trinca em nenhum dos CPs $\frac{1}{2}T$ CT.

4. TEMPERATURA DE REFERÊNCIA DO MATERIAL ENSAIADO

Através da eq. (1) os valores J_c , obtidos dos ensaios, são transformados em valores K_{Jc} equivalentes que são utilizados na determinação da temperatura de referência (T_o) do material após serem normalizados para uma espessura unitária (B_{1T}) pela eq. (2). Nesta eq., B_{xT} é a espessura dos corpos de prova ensaiados, K_{B1T} é o valor normalizado para 1T, K_{Bx} é o valor obtido nos ensaios e K_{min} é um valor limiar do fator intensidade de tensões abaixo do qual a probabilidade de ocorrer fratura por clivagem é nula. A norma ASTM E1921 [1997] adota $K_{min} = 20$ MPa \sqrt{m} .

$$K_{B1T} = K_{\min} + (K_{Bx} - K_{\min}) \left(\frac{B_{xT}}{B_{1T}}\right)^{\frac{1}{4}}$$
(2)

A chamada Curva Mestra, eq. (3), proposta por Wallin [1991], representa o comportamento dos valores K_{Jc} medianos, $K_{Jc,med}$, (probabilidade acumulada de fratura de 50%), na região de transição, associados a uma espessura unitária. A temperatura de referência T_o é tal que $K_{Jc,med} = 100$ MPa \sqrt{m} quando T= T_o , isto é: quando o ensaio é realizado na temperatura de referência T = T_o .

$$K_{J_{c,med}} = 30 + 70e^{0.019(T-T_o)}$$
⁽³⁾

A norma ASTM E1921-97 estabelece o procedimento para calcular T_o a partir de um conjunto mínimo de seis valores K_{Jc} "válidos". No âmbito desta norma são válidos aqueles valores K_{Jc} que sejam iguais ou inferiores ao valor $K_{Jc,limite}$ dado pela eq. (4) onde b_o é o ligamento remanescente (=W-a), σ_{ys} é o limite de escoamento do material na temperatura de ensaio. A partir dos trabalhos de Dodds et al. [1995] e Ruggieri et al. [1998] o valor de M foi estabelecido em M = 30 de tal forma que seja mínima a discrepância entre o valor de J calculado na ensaio (*far field J*) e o valor teórico existente na ponta da *trinca (near crack tip J*). Esta condição limita severamente a temperatura de ensaio para os corpos de prova pequenos. No âmbito deste trabalho, para obter $K_{Jc,limite}$ foi considerado um único valor de $\sigma_{ys} = 570$ MPa para as 4 temperaturas dos ensaios e foi adotado E = 210 GPa.

$$K_{Jc,limite} = \sqrt{\frac{\sigma_{ys} E b_o}{M}}$$
(4)

Uma discussão detalhada do procedimento da norma ASTM E1921-97 para determinar o valor de T_o , inclusive para as situações em que existem valores K_{Jc} inválidos, i.e. superiores a $K_{Jc,limite}$ é apresentada em [Miranda, 2000b]. Na tabela 4 são apresentados os valores da temperatura de referência (T_o) do material ensaiado e alguns parâmetros intermediários obtidos no processo de cálculo de T_o .

		# de CPs /	Parâmetr	To		
Geometria	Т	resultados	$K_{Jc,median}$	K _o ¹	To	médio
	(°C)	válidos	MPa√m	MPa√m	(°C)	(^{o}C)
	-75	12 / 11	143.3	156.6	-90.7	-92.7
СТ	-100	12 / 12	107.7	116.1	-94.8	
	-75	6 / 1	183.2	220.8	$[-109.6]^2$	
Charpy	-90	10 / 8	123.9	133.9	-92.9	-96.1
	-106	6 / 6	110.7	119.4	-99.4	
	-75	9/3	197.5	236.0	$[-112.2]^2$	
SENB	-106	8 / 8	100.6	108.3	-90.5	-90.5
					(Média geral)	-93.1

Tabela 4. Valores de T_o e parâmetros obtidos

¹ – antes do ajuste de espessura; $[]^2$ – não é um valor válido

5. DISCUSSÃO DOS RESULTADOS

Os dois conjuntos com 12 corpos de prova $\frac{1}{2}$ T CT cada um, ensaiados a -100 °C e -75 °C, forneceram praticamente o mesmo valor de T_o com cerca de +/-2 °C em relação ao seu valor médio (-92.7 °C).

A partir do conjunto de 8 corpos de prova SENB ensaiados a -106 °C obteve-se T_o=-90.5 °C. Este valor é muito próximo daquele valor médio obtido com os corpos de prova CT.

O conjunto de CPs Charpy, com 6 resultados, todos válidos, ensaiado a -106 °C forneceu $T_o = -99.4$ °C. A temperatura de referência obtida com os corpos de prova Charpy ensaiados a -90 °C é -92.9 °C.

A aceitação destes valores, como preconizado pela norma E1921 [ASTM 1997] implica a aceitação implícita de uma faixa de, pelo menos, +/- 10 $^{\circ}$ C em torno do valor provável da temperatura de referência (de -99.4 $^{\circ}$ C a -90.5 $^{\circ}$ C).

A média geral para a temperatura de referência, considerando os 5 conjuntos com pelo menos 6 valores válidos, é –93.1 °C.

Análise fractográfica e confiabilidade no valor de T_o . A determinação do valor T_o é um processo estatístico e a quantidade N de resultados K_{Jc} influi no valor obtido para T_o . Quanto maior for o valor de N maior será a confiabilidade no valor T_o . Esta confiabilidade varia, também com a temperatura de ensaio. Dada a natureza da Curva Mestra, as incertezas na determinação de T_o são maiores na região de baixas temperaturas (T< T_o), onde os ensaios com corpos de prova pequenos devem ser realizados – eq. (4). A confiabilidade no valor T_o em função de N e T é discutida em outro trabalho [Miranda 2000c].

Máxima temperatura de ensaio. Para os CPs Charpy tem-se $K_{Jc,limite} \approx 140 \text{ MPa}\sqrt{\text{m}}$. Enquanto todos os valores K_{Jc} obtidos a –106 °C são válidos para determinar T_o, somente 1 valor obtido a –75 °C é válido. No grupo de 10 CPs ensaiados a –90 °C foram obtidos 8 valores válidos. Para os corpos de prova SENB, tem-se $K_{Jc,limite} \approx 190 \text{ MPa}\sqrt{\text{m}}$. Assim, enquanto que todos os 8 valores K_{Jc} obtidos a -106 °C são válidos para determinar T_o , somente 3 entre os 9 valores obtidos a -75 °C são válidos e existem, nesta última temperatura, 3 outros valores muito próximos do limite. Corpos de prova ½T CT, $K_{Jc,limite} \approx 200 \text{ MPa}\sqrt{\text{m}}$: a -100 °C todos os 12 valores K_{Jc} obtidos são válidos e, a -75 °C existem 11 valores válidos para determinar T_o , entre os 12 valores obtidos.

6. CONCLUSÕES

A partir da análise dos resultados, a temperatura de referência do material ensaiado é de $T_o = -93.1$ °C.

Para este material, é possível avaliar a temperatura máxima (T_{max}) em que se pode ensaiar os CPs com as geometrias utilizadas e, ainda assim, obter 6 valores válidos para determinar T_o sem incorrer em um número exagerado de resultados inválidos.

Geometria $\frac{1}{2}T$ *CT* – Devido a natureza exponencial da Curva Mestra, T_{max} não deve estar muito longe da faixa –70 °C a –65 °C, i. e.: (T-T_o)_{max} ≈ 25 °C sob risco de se ter um grande número de resultados inválidos e, consequentemente, necessidade de ensaiar um número ainda maior de corpos de prova.

Geometria (0.4*T*) *Charpy* – A –75 °C só houve um resultado válido e a –90 °C oito são válidos em um grupo de 10 resultados. Isto mostra que para esta geometria T_{max} está ligeiramente superior mas em torno de –90 °C, i. e.: $(T-T_o)_{max} \approx 0$ °C.

Geometria 0.354T SENB – A –75 °C foram obtidos 3 resultados válidos, isto mostra que é possível obter o número mínimo de resultados válidos exigidos pela norma E1921 [ASTM, 1997], a esta temperatura, pelo aumento, embora não exagerado, do número de CPs ensaiados. Assim esta temperatura parece ser o valor para T_{max} visando determinar T_o com esta geometria (B = 9 mm, W = 18 mm), i. e.: (T-T_o)_{max} ≈ 20 °C.

Considerando a média geral de T_o (-93.1 °C), ou o valor médio obtido com os corpos de prova $\frac{1}{2}T$ CT (-92.7 °C), como temperatura de referência para este material ensaiado, os resultados obtidos com o presente estudo mostram que é possível ter um valor confiável de T_o ensaiando corpos de prova pequenos (B<1T: $\frac{1}{2}T$ CT, Charpy e 0.354T SENB).

7. REFERÊNCIAS

- ASTM E1921, 1997. Test Method for Determination of the Reference Temperature, T_o, for *Ferritic Steels in the Transition Range*. American Society for Testing and Materials, Philadelphia, PA.
- Dodds Jr., R. H., Ruggieri, C., Anderson, T. L., 1995. Numerical Modeling of Ductile Tearing Effects on Cleavage Fracture Toughness. In: Constraint Effects in Fracture. Theory Second Volume, American Society for Testing and Materials, Philadelphia, PA. ASTM STP 1244, p. 100-133.
- Miranda, C. A. J., 1999. Obtenção da Tensão de Clivagem e Nível de Confiabilidade na Determinação da Temperatura de Referência de Aços Ferríticos na Transição: Abordagem Numérica e Experimental. . Tese de doutorado, Set/1999, IPEN/USP, São Paulo, SP.
- Miranda, C. A. J., 2000a. *Distâncias dos Elos-mais-Fracos até a Ponta da Trinca Análise Fractográfica*. Trabalho submetido para o XII ENFIR Encontro Nacional de Física de Reatores e Termohidráulica a ser realizado no Rio de Janeiro/RJ, em Outubro/2000.

Miranda, C. A. J., 2000b. A Curva Mestra e o Conceito de Temperatura de Referência Para

Ajustar os Valores de Tenacidade à Clivagem na Transição de Aços Ferríticos. Anais do Congresso Nacional de Engenharia Mecânica (CONEM 2000), 07-11/Agosto, Natal, RN.

- Miranda, C. A. J., 2000c. Curvas de Confiabilidade na Determinação da Temperatura de Referência de Aços Ferríticos na Transição Dúctil-Frágil. Anais do Congresso Nacional de Engenharia Mecânica (CONEM 2000), 07-11/Agosto, Natal, RN.
- Ruggieri, C., Dodds Jr., R. H., Wallin, K., 1998. Constraint Effects on Reference Temperature, To, for Ferritic Steels in the transition Region. Engineering Fracture Mechanics, v. 60, n. 1, p. 19-36.
- Wallin, K., 1991. Fracture Toughness Transition Curve Shape for Ferritic Structural Steels. In: JointT FEFG/ICF International Conference on Fracture of Engineering Materials, Singapore, August 6-8, p. 83-88.