EVOLUÇÃO DAS FASES FORMADAS DURANTE TRATAMENTOS TERMOMECÂNICOS EM LIGAS INOXIDÁVEIS COM EFEITO DE MEMÓRIA DE FORMA

Fabiana Cristina Nascimento⁽¹⁾ Odair Doná Rigo⁽¹⁾ Jorge Otubo^(1, 2) Paulo Roberto Mei⁽¹⁾ Carlos de Moura Neto⁽²⁾

⁽¹⁾Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica, Departamento de Engenharia de Materiais. 13083-970- Campinas, SP, Brasil. E-mail: fabcris@fem.unicamp.br

⁽²⁾Instituto Tecnológico de Aeronáutica, Centro Técnico Aeroespacial, 12228-900, São José dos Campos, SP, Brasil.

Resumo: Os materiais com Efeito de Memória de Forma (EMF) apresentam a capacidade de recuperar sua forma original quando aquecidas depois de terem sido deformadas além de seu limite elástico. As ligas inoxidáveis, Fe-Mn-Si-Cr-Ni-(Co) com (EMF), começaram a ser estudadas a partir da década de 90 sendo que no Brasil os primeiros trabalhos surgem em 1994 dando início a um estudo que vai desde a elaboração das ligas até resultados que relacionam a evolução das fases a medida em que se alteram os tratamentos térmicos. Neste trabalho, ligas inoxidáveis com (EMF) foram submetidas a diferentes tempos de tratamento térmico a temperatura constante com o objetivo de se obter uma microestrutura inicial diferente. As amostras com tamanho de grão austenítico menor apresentaram bandas de martensita- ε com orientação única no interior do grão. Propriedades como dureza e limite de escoamento $\sigma_{0,2\%}$ também foram alterados em função do tamanho de grão inicial.

Palavras chave: Efeito de Memória de Forma, Ligas Inoxidávies, Transformação Martensítica, Tratamento Termomecânico, Microestrutura.

INTRODUÇÃO

Diferente das ligas convencionais, que apresentam deformação plástica permanente, os materiais com Efeito de Memória de Forma (EMF) apresentam a capacidade de recuperar sua forma original quando aquecidas acima da temperatura A_F (temperatura de fim da transformação da martensita para austenita) após terem sido deformadas além do seu limite elástico. Em particular, nas ligas inoxidáveis a base de Fe, esse efeito está associado a transformação martensítica cristalograficamente reversível não termoelástica (Yang & Chen, 1992a) e (Otubo, 1996).

A transformação γ (CFC) $\leftrightarrow \epsilon$ (HC) ocorre em materiais com baixa energia de defeito de empilhamento (Yang & Chen, 1992b) (Kajiwara & Kikutchi, 1983) que

segundo (Bergeon & Guenin, 1997a-b) e (Bohong & Tsgio, 1997), é uma conseqüência da introdução de defeitos de empilhamento que surgem com o movimento de discordâncias parciais de Shockley durante o aquecimento. O produto das transformações $\gamma \leftrightarrow \varepsilon$, $\gamma \leftrightarrow \alpha$ ', $\varepsilon \leftrightarrow \alpha$ ', é fortemente afetado pela composição química da liga e também pelo tratamento termomecânico a que esta é submetida, (Ohtsuka & kajiwara, 1994) e (Zhang & Chen, 1998). Segundo (Garcia & Medrano, 1996), elementos como Cr e Mo aumentam a temperatura da transformação *CFC* \rightarrow *HC*. A presença do Si na composição da liga reduz a energia de defeito de empilhamento da austenita, facilitando a reversão da martensita, (Murakami & Suzuki, 1987).

A martensita- α ' aparece com a medida em que o material é deformado (Jang & Gu, 1995) e (Otubo & Mei, 1998). De acordo com alguns autores, dependendo do tipo de tratamento termomecânico aplicado a presença da martensita- α ' resulta em um fator negativo na recuperação de forma do material (Jang & Gu, 1995).

Variáveis como composição química e tratamento termomecânico atuam como fatores diretos na recuperação de forma, morfologia e evolução das fases. O objetivo desse trabalho é verificar a influência do tamanho de grão na evolução das fases e nas propriedades mecânicas, como limite de escoamento $\sigma_{0,2\%}$ e dureza, em função dos ciclos de tratamento termomecânicos para a liga Fe-Mn-Si-Cr-Ni-(Co).

PROCEDIMENTO EXPERIMENTAL

Neste trabalho utilizou-se a liga inoxidável com (EMF) obtida por (Otubo & Mei, 1994a-b) em um forno de indução a vácuo (VIM), cuja composição química do material está apresentada na Tabela 1.

Tabela 1. Composição química (% em peso) da figa moxidaver com EMF.					
С	Mn	Si	Cr	Ni	Со
0,044	7,81	5,16	13,02	5,74	11,85

Tabela 1. Composição química (% em peso) da liga inoxidável com EMF.

O lingote obtido foi forjado a quente em forma de barra com posterior solubilização a 1050° C durante uma hora com resfriamento em água. Com o objetivo de se obter uma microestrutura inicial diferenciada, a barra solubilizada foi laminada a frio com uma redução em área de aproximadamente 40% sendo posteriormente dividida em várias partes. Todas as amostras foram tratadas a 1050° C em tempos diferentes: 10 minutos, 1, 2, 5, 8 e 16 horas com posterior resfriamento em H₂O. Neste estágio foram realizados ensaios de dureza Vickers com carga de 5N.

O ciclo de tratamento termomecânico aplicado a todas as amostras consistiu de: deformação de 4% por compressão, seguido de aquecimento a 600° C por 30 minutos para recuperação de forma. Todas as amostras foram submetidas a cinco ciclos e meio de tratamento termomecânico, ou seja: no sexto ciclo as amostras foram apenas deformadas. Durante a realização dos ensaios de compressão foram mantidas as seguintes condições: $1,4x10^{-4}$ s e 0,075mm/minuto. O tamanho inicial das amostras foi de 9mm de comprimento por 6mm de diâmetro.

Para a análise da morfologia das fases presentes durante o tratamento termomecânico, a superfície das amostras foram preparadas com polimento mecânico seguido de polimento químico proposto por (Kounick'y, 1968). Posteriormente as amostras foram atacadas com o reagente: 2ml HCl + 2ml HNO₃ e analisadas por microscopia eletrônica de varredura. A análise por metalografia ótica foi em amostras polidas eletroliticamente e atacadas com 100ml H_2O + 15ml HCl + 15gr $K_2S_2O_5$ + 5gr HN_4HF_2 + 10gr $Na_2S_2O_5$.

A microscopia ótica foi utilizada para analisar a evolução das fases a partir da amostra deformada, solubilizada a 1050° C em diversos tempos e por fim no último ciclo de tratamento termomecânico. A estimativa do diâmetro de grão foi obtida utilizando a técnica da intersecção linear sendo posteriormente comparada com o método de Hilliard (círculo). A partir das curvas obtidas nos ensaios de compressão foi estimado o limite de escoamento $\sigma_{0.2\%}$ para todas as condições.

RESULTADOS E DISCUSSÃO

A deformação de aproximadamente 40%, após a solubilização da barra, resultou em uma estrutura de grãos totalmente deformados no sentido da laminação, como pode ser visto na Figura 1a.

Figura 1. Micrografia ótica- 400X: (a)- após a laminação, (b)- após tratamento térmico a 1050°C/2horas/H₂O.

Com o material no estado apresentado na Figura 1a, iniciou-se a segunda etapa do procedimento experimental, que resultou em amostras iniciais com diferentes microestruturas servindo como material de partida para o tratamento termomecânico. A Figura 1b, apresenta uma micrografia ótica da amostra após o tratamento térmico de 1050°C por 2 horas. Microestruturas semelhantes foram obtidas nas amostras submetidas a outros tempos de tratamento a esta temperatura, exceto com relação ao tamanho de grão que cresceu para tempos maiores de tratamento. A Figura 1b, apresenta maclas de recozimento, característica de materiais com baixa energia de defeito de empilhamento. O contraste das cores é devido a diferença de orientação dos grãos austeníticos.

A Figura 2 apresenta o esquema do tratamento termomecânico utilizado, e a Figura 3 a microestrutura das amostras após o sexto ciclo incompleto.

Na Figura 3 (referente ao sexto ciclo incompleto) pode-se observar o crescimento do tamanho do grão a medida em que se aumenta o tempo de tratamento a 1050°C. O tamanho de grão mínimo foi de 35µm para a amostra tratada por 10 minutos (Figura 3a), 71µm para a amostra tratada por 8 horas (Figura 3b) e 88µm para o maior tempo de tratamento térmico, Figura 3c.

A influência do tamanho de grão na morfologia da martensita- ε induzida mecânicamente é bastante visível.

Figura 2. Diagrama esquemático dos ciclos de tratamento termomecânico.

Figura 3. Microgafia ótica referente ao último ciclo de tratamento termomecânico, 100X. (a)- 10 minutos, (b)- 5 horas e (d)- 16 horas.

Na Figura 3a (tamanho de grão menor) observa-se que as bandas de martensita tem orientação única no interior dos grãos. A medida em que o tamanho de grão aumenta, observa-se o aparecimento de bandas de martensita- ε em diferentes orientações no mesmo grão. Esta tendência é tanto maior quanto maior for o tamanho de grão como pode ser observado na Figura 3c. Isto significa que a acomodação da martensita- ε induzida mecânicamente é mais difícil quanto maior for o tamanho do grão, o que leva a multi-orientação das bandas de martensita em único grão, Figura 3c.

Em nenhuma das amostras observou-se modificação no tamanho de grão inicial austenítico com os ciclos de tratamento termomecânico, o que significa que o tratamento a 600°C por 30 minutos não é suficiente para recristalizar esse material.

Segundo resultados mostrados por (Ohtuska & Kajiwara, 1994) e (Tsuzaki & Ikegami, 1992) em ligas semelhantes, a quantidade de martensita- ε aumenta a medida em que o material é submetido á vários ciclos de tratamento termomecânico ocorrendo então um processo acumulativo resultando em uma quantidade maior de martensita- ε para ser transformada e conseqüentemente melhorando o (EMF) com a ciclagem.

Em nenhum dos casos foi observada a presença da martenstia- α após o último ciclo de tratamento termomecânico, o que nos leva a supor que estamos com uma fração volumétrica muito pequena dessa fase. Segundo (Gu & Humbeeck, 1994) a

transformação $\gamma \rightarrow \epsilon \rightarrow \alpha$ depende muito da composição do material e da deformação aplicada a cada ciclo.

Figura 4. Micrografia Eletrônica de Varredura referente ao último ciclo incompleto de tratamento termomecânico com tratamento inicial de 1050°C por 16 horas.

Todas as amostras apresentam uma estrutura semelhante à Figura 4, onde se observa uma estrutura lamelar com bandas de martensita- ϵ vista com aumento de 4000X para a amostra com tamanho de grão austenítico de 88µm. As bandas de martenstita- ϵ apresentaram-se com largura da ordem de µm.

A Figura 5 apresenta a variação nos valores de limite de escoamento $\sigma_{0,2\%}$ em função do número de ciclos para amostras tratadas em tempos diferentes a temperatura de 1050°C. Observa-se que para um menor ciclo, essa taxa de escoamento a 0,2% de deformação é tanto menor quanto menor for o tamanho do grão. O decréscimo na tensão de escoamento significa que a indução de martensita- ε torna-se mais fácil com o aumento no número de ciclos. Resultados semelhantes foram obtidos por (Otubo, 1996), onde esse processo é conhecido como treinamento.

Já o decréscimo na tensão de escoamento com diminuição no tamanho do grão, vem a confirmar a hipótese inicial. A tensão necessária para induzir a transformação martenstítica $\gamma \rightarrow \varepsilon$ decresce a medida em que o grão austenítico é menor. Isso significa que a transformação é favorecida quando a estrutura apresenta um número maior de contornos de grão.

Isto pode ser mostrado mais claramente na Figura 6, em que a tensão limite de escoamento no sexto ciclo incompleto está apresentado em função do tamanho do grão.

Este resultado quando comparado com a metalografia ótica (Figura 3) vem a confirmar que um tamanho de grão menor, apresenta uma melhor acomodação das bandas de martensita, apresentando um limite de escoamento menor. A multiorientação da fase ε requer uma tensão limite de escoamento maior, tornando a formação da martensita- ε mais difícil.

Figura 5. Limite de escoamento σ (0,2%) para amostras tratadas com diferentes tempos de tratamento térmico a temperatura de 1050°C em função do número de ciclos de tratamento termomecânico.

Figura 6. Variação do limite de escoamento (para o último ciclo) e da dureza (antes do tratamento termomecânico) em função do diâmetro do grão.

Já em termos de dureza que reflete a deformação plástica da matriz austenítica como um todo, o comportamento foi clássico, diminuição da resistência mecânica com o aumento do tamanho de grão, obedecendo a relação de Hall-Petch (Dieter, 1988).

Quanto maior o tamanho de grão menor é a área de contornos de grão que favorecem a movimentação de discordâncias perfeitas. Mais trabalhos estão sendo realizados no sentido de verificar qual é o efeito do tamanho do grão na recuperação e forma dessas ligas.

CONCLUSÕES

- 1. Análises feitas no último ciclo incompleto indicam que amostra com tamanho de grão menor apresenta bandas de martensita com orientação única e que a medida em que o tamanho de grão aumenta outras orientações começam a aparecer no interior do grão austenítico.
- 2. A tensão de escoamento que produz a transformação $\gamma \rightarrow \epsilon$ diminuí com a diminuição no tamanho de grão austenítico.
- **3.** A dureza decresce com o aumento do tamanho de grão e obedece aproximadamente a relação clássica de Hall-Pecth.

AGRADECIMENTOS

- Ao CNPq, pelo auxílio financeiro a Nascimento, F. C., processo nº:14353/98-3
- Á FAPESP, pelo auxílio financeiro a Otubo, J., processo nº: 98/10971-1

- Á Agência Espacial Brasileira (convênio FUNCAMP/AEB n°2053), a Villares Metals SA, ao Instituto Tecnológico da Aeronáutica e ao Instituto de Pesquisas Espaciais pelo apoio ao projeto de desenvolvimento de ligas com Efeito de Memória de Forma.

BIBLIOGRAFIA

- Bergeon, N.; Guenin, G.; Esnouf, C., (1997a), "Characterization of the stressinduced ε martensite in a Fe-Mn-Si-Cr-Ni shape memory alloy: microstructrural observation at different scales, me chanism of formation and growth". Materials Science and Engineering, Vol. A238, pp-309-316.
- Bergeon, N.; Guenin, G.; Esnouf, C., (1997b), "Study of the faults stackings in the γ(f.c.c) ↔ ε(h.c.p) martensiti transformation", J. Phys., Vol. IV, N. 7, pp.125-130.
- Dieter, G. E. (1988),"*Mechanical Metallurgy*". SI Metric ed.
- Garcia, A.J.S.; Medrano, A. M.; Rodríguez, A S. (1996), "Effect of solution treatments on the FCC/HCP isothermal martensitic transformation in CO-27Cr-5Mo-0,05C aged at 800°C., Scripta Materialia, Vol. 40, N. 6, pp. 717-722.
- Gu, Q.; Humbeeck, J. V; Delaey, L., (1994), "A review on the martensitic transformation and shape memory effect in Fe-Mn-Si alloys", Journal de Physique IV, Vol. 4, pp. 135-144.
- Jang, W. Y.; GU, Q.; Humbeeck, J. V.; Delaey, L., (1995), "Microscopic Observation of γ-phase and ε- and α'-martensite in Fe-Mn-Si-based shape memory alloys.", Materials Characterization, Vol. 34, pp. 67-72.
- Kajiwara, S.; Kikutchi, T., (1983), "Reversible movement of the austenite-martensite interface and dislocation structures in reverse-transformed austenite in Fe-Ni-C alloys., Philosophical Magazine, A, Vol. 48, N. 4, pp. 509-526.
- Kajiwara, S., (1999), "Characteristic features of shape memory effect and related transformation behavior in Fe-based alloys." Materials Science and Engineering, vol. A 273, pp. 67-88.

- Kounick'y, J., (1968), "Deformation twinning in austenite Fe-Ni-C alloys at room temperature", Phil. Mag, 18, pp. 205.
- Murakami, M.; Suzuki, H.; Nakamura, Y., (1987) "Effect of Si on the shape memory effect of polycrystalline Fe-Mn-Si alloys", Transaction ISIJ, Vol. 27, pp. 87.
- Ohtsuka, H.; Kajiwara, S.; Ishihara, T., (1994), "Effect of γ ↔ ε cyclic transformations on the shape memory characteristics of an Fe-Mn-Si-Cr-Ni alloy.", Materials Characterization, Vol. 32, pp. 229-235.
- Otubo, J.; Mei, P. R.; Koshimizu, S., (1994a), "Desenvolvimento de novos aços inoxidáveis com efeito de memória de forma", Anais do IV Seminário Brasileiro de Aço Inoxidável, INOX'94, São Paulo, SP, Brasil, pp. 131-136.
- Otubo, J.; Mei, P. R.; Koshimizu, S., (1994b) "Caracterização de aços inoxidáveis com efeito de memória de forma", Anais do 11º Congresso Brasileiro de Engenharia e Ciências dos Materiais, CBCIMAT, Águas de São Pedro, SP, Brasil, pp. 219-222.
- Otubo, J.; Mei, P. R.; Koshimizu, S.; Shinohara, A. H.; Suzuki, C. K., (1998). *"Relations between thermomechanical treatment, microstructure and α' martensite in Fe based stainless shape memory alloys"*, International Conference on Martensitic Tranformations, ICOMAT'98, pp. 2-10.
- Otubo, J., (1996), "Desenvolvimento de ligas inoxidáveis com efeito de memória de forma: elaboração e caracterização", Tese de doutorado, Unicamp.
- Tsuzaki, K.; Ikegami, M.; Tomota, Y.; Kurokawa, Y.; Nakagawara, W.; Maki, T., (1992), "Effect of thermal cycling on the martensitic transformation in an Fe-24Mn-6Si shape memory alloy". Materials Transactions, JIM, Vol. 33, N. 3, pp.263-270.
- Yang, J. H.; Chen, H.; Wayman, C. M., (1992a), "Development of Fe-based shape memory alloys associated with face-centered cubic-hexagonal close packed martensitic transformations: part I. Shape memory behavior", Metallurgical Transctions, Vol. 23A, pp. 1431-1437.
- Yang, J. H.; Chen, H.; Wayman, C. M., (1992b), "Development of Fe-based shape memory alloys associated with face-centered cubic-hexagonal close packed martensitic transformations: part II. Shape memory behavior", Metallurgical Transctions, Vol. 23A, pp. 1439-1444.
- Zhang, J.; Chen, Shuchuan.; Li, L.; Hsu, T. Y. "Analysis of the stress-strain curves of a Fe-Mn-Si shape memory alloy", (1998), Materials Characterization, Vol. 40, pp. 37-41.