
TOWARDS THE GENERAL USE OF OBJECT-ORIENTED SOFTWARE
ENGINEERING IN EVERYDAY FINITE ELEMENT PROGRAMMING

Gray Farias Moita
Henrique Elias Borges
Vinícius Ferreira de Oliveira Campos
Valdemilson Lopes dos Reis
Centro Federal de Educação Tecnológica de Minas Gerais, Departamento de Pesquisa e Pós-
Graduação, Av. Amazonas, 7675, Nova Gameleira, 30510-000, Belo Horizonte, MG, Brasil.
E-mail: gray@dppg.cefetmg.br

Abstract

This paper discusses the convenience of the application of object-oriented software
engineering (OOSE) concepts and techniques in the development of software for engineering
in order to increase the reliability and performance, enhance the reusability and scalability,
and reduce the cost of production and maintenance. It is restricted to the software dedicated to
analysis of problems solved via the finite element method (FEM), which has many
applications in the field of engineering. Nonetheless, the arguments presented here apply
equally well, mutatis mutandis, to any software for the engineering.

Keywords: Software engineering, Finite elements, Object-oriented programming, UML,
Systems modelling.

1. INTRODUCTION

The development of finite element codes has become a common task in civil, mechanical,
aeronautical, electrical (among others) engineering fields for the last decades. However, little
attention has been given to the use (or, rather, reuse) of some of these results in future
developments. The prevalent approach employed could be summarized as “here is the
algorithm, just code it”, and to extend the software “pick some functionality and code it, then
pick another functionality and add to it”. There is no planning at all for the software to grow
or change, as it would inevitably do. Hence, more and more lines of code are being generated
everyday and the re-utilisation of earlier works tends to be low, especially due to the lack of a
systematic approach to the development and of a general definition of software development
guidelines. There has been some attempts to accomplish this kind of continuity but so far the
results are far from satisfactory.

The main problem faced by the current finite element codes, especially those developed
at universities, is the lack of a methodological approach for the programming. Coupled with
the vast quantity of code generated, some aging more than 30 years, this “disorganised”
approach can easily lead to large programs where the maintenance is neglected and reuse is
almost impossible. In addition, this deficiency introduces many problems when different
researchers try to use the same program. Of course, such problems could be alleviated if some
of the directives from the modern OOSE are applied.

Another source of trouble is related to the programming languages utilised in FEM
software. Traditionally procedural languages, like Fortran, C and Pascal, have been used to
implement the method. Also, these FEM software were often developed in many distinct
programming languages. The use of C++, for example, to supersede Fortran usually finds
great opposition, although the clear gains are generally recognised. This happens mainly due
to the large number of Fortran routines that can be found everywhere and the high cost
involved in converting then into some object-oriented programming (OOP) language.

For the last 10 years object-oriented programming languages has been employed in
development of engineering software. As far as the application with the Finite Element
Method (FEM) is concerned, good reviews can be found in McKenna (1997), Marczak (1999)
and Bittencourt et al. (1999). Marczak puts together some of the recent publications and an
interesting overview of different ways and interpretations of modelling finite element using
OOP.

Despite the fact that in the last decade the developers of FEM software started using OOP
languages and worrying about reusability and scalability of their software, there is a long way
to go through, in order to achieve “industrial strength” FEM software. Fortunately, this
situation is gradually changing, with the help from the concepts of object-orientation, as
Marczak’s work has shown. To be successful in this enterprise, one must complete the
paradigm shift initiated in the early ‘90s, and move towards the application of object-oriented
software engineering (OOSE) concepts and techniques in the development of software for
engineering.

In this paper the Unified Modelling Language (UML) is used in conjunction with finite
elements in order to develop a simple axisymmetric finite element and initiate a validation of
this new combination. Some diagrams, associations and notation are shown and its use in the
current context is exploited. It must be emphasised here that this work brings results from
initial experiments with the finite element/UML association and only some early conclusions
are drawn and discussed. In this study, the FEM is treated in a pure academic way. This
means that the development shown here is used merely to demonstrate the application of the
UML for a finite element implementation.

2. HOW CAN OOSE IMPROVE THE MODELLING OF ENGINEERING
SOFTWARE

To answer the above question some aspects must be pointed out. Software engineering
encompasses a proven (not in the scientific sense, but rather in the empirical sense of “best
practices”) body of knowledge, tools, techniques and methods to develop computer software
products.

There are many ways to develop a software. The two most commons are the procedural
approach (also called, algorithmic approach), and the object-oriented approach. In the former,
the main building block of a software is the procedure, function or routine, and the main goal
of the developer is to decompose a large algorithm into smaller pieces of code (procedures
and routines). In the object-oriented approach the main building block of a software is the
object, or better, a class of objects. In a phrase, the object is a thing (like a steel bar or a node
in a finite element analysis) that has identity (can be distinguished, in some way, from other
objects), state (is created; evolves in time, passing through many states; and, eventually, is
discarded, i.e., has a lifecycle), and behaviour (can do things in benefit of other objects).

There is nothing inherently wrong with the procedural approach. It can be (and has been)
used to develop very good software. On the other hand, there are plenty of software said to be
object-oriented (as if OO would be a stamp ensuring quality) that hardly could be called
“software”. Object-orientation is not a programming language, rather it is a concept (or a

development paradigm) we could use to develop better software systems. Both approaches
can benefit a lot from the software engineering techniques.

The main objective of software engineering, both procedural or object-oriented, is to
improve software quality by maximising the overall performance, reliability and life cycle of
the product, reducing production cost, and minimising the development time, the need for
maintenance and the occurrence of errors.

In spite of the increasing publicity of the recent years, software engineering can still be
regarded a new branch of the computer science, at least for the non-computer scientists. This
often leads to bad development procedures especially due to a lack of experience from the
practitioners and of well-disseminated practices necessary to the accomplishment of any
product development. However, much effort has been devoted to lead software engineering to
the maturity one would expect to find in some of the more traditional fields of engineering.

It is far beyond the scope of this paper to present the principles of the object-oriented
software engineering, or to discuss the differences between procedural and object-oriented
software engineering (for such, see the excellent book of Pressman, 1997). Instead, our main
purpose is to advocate the cause that OOSE can effectively contribute to the development of
software for engineering and point out three ideas, which can be easily applied, to improve the
quality and reusability of the FEM software. These are the ideas concerning visual modelling
and Unified Modelling Language (UML), architectural design, design and architectural
patterns.

The basic idea behind the visual models is the abstract representation of the software,
encompassing details so that all the complexity can be more easily dealt with, mainly with
complex systems where the comprehension is generally very difficult. Instead of starting
straight with lines and lines of code, the software engineer has got an alternative and attractive
approach to analyse the software (or rather, a general overview of it) without having to worry
about specific points and implementation details at the early stages of development.

Visual modelling is a friendly way of representing a problem by mimicking the real-
world processes or, better, simulating the environment delineated by the problem. The main
advantage of using a visual modelling is that it facilitates the understanding of the
requirements of the software to be developed. Therefore, better design and maintenance can
be achieved. Well-produced models are a very useful manner to format a clear and easily
understandable project. Besides, they can show different views and scenarios within a given
development.

In the late ‘80s and early ‘90s several methodologies, and CASE (Computer Aided
Software Engineering) tools, have been developed in an attempt to create a standard in visual
modelling. Three of them are worthy mentioning because they were created by three top
methodologists: Object Modelling Technique (OMT) from James Rumbaugh, Object-
Oriented Software Engineering (OOSE) from Ivar Jacobson and Booch Method from Grady
Booch. Each modelling approach has its own characteristics and can be used in any given
development. However, as always, they also have their drawbacks and that is the main reason
to devise a new and standard modelling method. The effort for the unification of the three
above methods began by the end of 1994. Soon, the stakeholders from the software industry
joined the effort, and finally by the end of 1997 the Unified Modelling Language (UML) was
formally accepted as standard by the Object Management Group (OMG). The OMG is an
international non-profitable organisation, established in 1989, to promote the development of
the theory and practice of the object technology.

Nowadays, the UML is one of the main visual modelling languages there exists. Note that
UML is not a programming language, instead, it is a language specially constructed for the
purpose of visual modelling. With the help of UML one can obtain a clearer view of what one
is trying to develop, one can capture the user’s points of view and, also, easily check the

functionality of the software. If used correctly, UML can eliminate miscommunication due to
different modelling terminology, hence, increasing efficiency.

The UML can handle different levels of complexity or different views, so that the system
can be displayed in a number of ways and visualised from different standpoints. Reuse of
components can be made in a natural manner and modules can be much comfortably
manipulated and comprehended. The UML can be used to visualise, specify, construct and
document the software to be built and is a handy approach to be used with the traditional
software engineering.

Although very young, there is a lot of literature available about UML, as can be seen, for
example, in Booch et al. (1999), Fowler and Scott (1997), and of course, in the Internet. The
main problem we found concerning the literature is that sometimes it becomes out-of-phase
with the current standard release of the UML, since OMG is working very hard and fast to
keep UML up to date.

If one intends to develop a robust software to be reused by oneself and/or others, and to
be changed later (as it certainly will), one should plan for it. So, our first concern should be:
what this system will do, how it will be organised, how it will be partitioned into components,
how the components would interact, how the components will be allocated for processing in
the computers in our network, how can one component be added to the system to increase
functionality, how the performance will be affected, etc. These are some of the issues
addressed in the architectural design of a software system.

Good architectures are built over well-defined abstraction layers. Each layer represents
one coherent abstraction, with a well-defined and controlled interface. Each layer uses the
services (functionality) of the lower layers, through their interfaces. Lower layer presents a
lower level of abstraction. There is a clear distinction between the interface of a layer and the
implementation of the layer itself, such that changes in the implementation of the layer do not
affect the layers above (Rechtin, 1991).

Yet, it is virtually impossible to capture such a wide range of issues and demands, in a
single picture. This means that the software architect should analyse the software from several
different perspectives or viewpoints. How many viewpoints are necessary to ensure the
software to be built is fully understood? In a classical paper, Kruchten (1995) argues that one
needs “4+1” views of the architecture, which are:

1. Logical View: primarily describes the functional requirements of the system, i.e.,
“what” the system is supposed to provide in terms of services for its end users;

2. Process View: this view addresses some non-functional requirements such as
performance and system availability. It also addresses issues like fault-tolerance,
system integrity, concurrency and distribution;

3. Development View: describes the software static organisation in its development
environment, i.e., defines how the components of a software would be grouped. A
component is a unit of source code that will be used as a building block for the
structure of the system;

4. Physical View: maps the processes, tasks, objects and every element identified in
every other view onto the various processing nodes (like computers and the alike),
taking into account the system’s non-functional requirements mentioned above;

5. Use Case View: this is a redundant view with the other ones, hence the “+1”. This
view drives the process of discovering architectural elements in the other four
views. Also, it validates and illustrates the architectural design.

The above architecture has been widely accepted in the community of software engineers.
However, it seems that the architectures designed in the last years for the FEM software
(Marzak, 1999; McKenna, 1997) do not satisfy the architectural model proposed by Kruchten.
Therefore, it is not a surprise when they present problems concerning reuse of parts of codes

(e.g., when someone else wants to use the software to solve a different problem using FEM),
they could not be changed easily (e.g., in order to take into account an enhancement of an
algorithm), and so on.

Another useful idea that increases the software productivity and quality, is reuse of
design patterns. A design pattern describes a common way of modelling (designing)
something. In this sense, it is like a template or an example model. However, a design pattern
is much more than an example model, it is a solution, or a set of solutions, to a specific
designing problem. Most of the design problems faced by the developers are recurring, so are
the solutions. This is the main reason why designing patterns are so important ,i.e. , they take
the idea of reuse one step further.

In a design pattern, the problem is posed and made clear, then a set of solutions to model
(and solve) the problem are presented and explained. Also, some analyses are made
concerning the pros and cons of each solution and in which circumstances it works or not. It is
also worthy mentioning that design patterns are independent of programming language, so
they can be coded in the object-oriented programming language preferred by the user.

Design patterns is still a new research field, but is growing at an astonishing rate. The
most influential reference is Gamma et al. (1995); another useful reference is Larman (1998).
In the Internet there are dozens of web sites dedicated to patterns. The search could begin at
the Patterns Home Page (http://hillside.net/patterns/patterns.html) and at the Ward
Cunningham’s Portland Patterns Repository Page (http://c2.com/ppr/index.html).

If design patterns takes the idea of reuse one step further, then architectural patterns takes
it even farther. The main idea behind architectural patterns remains being reutilisation, this
time at a highest level of abstraction. Architectural patterns are an even newer research field,
also growing very fast. Nowadays, there are some architectures already available in books like
Buschmann (1996) and in the Internet. Although they are not completely suitable for software
developed for engineering use, they still can be employed as a starting point to construct our
own architecture, tailored to fit for our own needs.

3. WHY SHOULD THE UML BE USED

The UML is a formal standard established by the Object Management Group (OMG) in
November 1997. Since then, the UML is rapidly becoming, not only the “de jus” standard, but
also the “de facto”, since it has been supported and adopted by some of the main industry
leaders in the software development arena, including IBM, Microsoft, Hewlett-Packard,
Unisys, I-Logix, Oracle, Rational, Texas Instruments, MCI Systemhouse, Intelligcorp, ICON
Computing, Ericsson, Andersen Consulting, Sterling Software, and many others. To maintain
the UML up to date with the most recent advances of the OOSE and demands from the
software developers, the OMG has put together the Revision Task Force which has recently
released UML version 1.3, whose adoption voting process in under way (see the OMG web
site at http://www.omg.org).

As pointed out by Booch et al. (1999), the UML is much more than a bunch of graphical
symbols, it is a powerful language that has been built, from the very beginning, to achieve
three goals: enable the modelling of systems, from the conception to execution, within the
object-oriented paradigm; address the issues of scale, typical in the complex, mission-critical
systems; be a modelling language usable by both humans and computers.

The UML defines an expressive and coherent notation fully consistent with the concepts
of object-orientation. Some of the characteristics of the UML are:

1. It provides end users, developers, designers, software engineers and software
architects with a common standardised language. Hence, contributing to enhance
the dialog among these actors;

2. It supports Kruchten’s “4+1” architectural views of a system as it evolves
throughout the software development lifecycle;

3. It is the only language a developer will need in order to specify, visualise,
construct, and document a software system. Also, it is a handy approach to be used
with the traditional software engineering techniques;

4. It is a visual modelling language, meaning that it employs a graphical notation;
5. Its vocabulary and rules (semantic and syntax) are precise, unambiguous and

complete, such that, everyone can understand;
6. It focuses on the conceptual and physical representation of a system. Thus, making

the process of software specification easier, clearer and unambiguous;
7. As a language, it is independent from the chosen software development process.

Nonetheless, one must choose any development process in order to model a given
software;

8. In conjunction with a well-defined software development process, it contributes to
make the reuse of pieces of code easier, and even the reuse of design and
architectural patterns;

9. The models built with UML have excellent stability in relation with changes in the
specification, i.e., small changes in the software requirements do not imply
massive changes in the models;

10. There are several CASE tools of excellent quality available in the market (some of
them enabling code generation directly from the model) that supports the UML;

11. The UML has been used successfully in the development of very large and
complex software, from aircraft simulation systems to strategic enterprise
information systems. It has been also used in the modelling of mission-critical
real-time systems;

12. The development of UML has been a collective effort, the contributions coming
from the most prominent scientists and software engineers.

4. SMALL FINITE ELEMENT APPLICATION

In this section a simple axisymmetric finite element is used to demonstrate the utilisation
of the UML for a finite element implementation. Once again, it should be emphasised that this
application has been simply devised to illustrate a combination FEM/UML without much
concern with the originality and complexity of the problem. Note that, due to the lack of
space, only three diagrams are shown in order to depict the functionality of the visual
language employed in the current context.

In the development to be described below, each diagram is briefly explained according to
the usual UML terminology.

Use Case Diagram:
The use cases describe the functional requirements of the system as observed by the

external actors. The actor could be viewed as something that interacts with the system and can
be a user, a device or another system. Figure 1 presents the Use Case diagram for the present
case study.

In the current use case model, only one actor has been created, namely, the user running
the software. The diagram also shows the use cases: check data, define finite element,
assemble matrix, assemble vector and solve system. They define the ways the system
functions. The use case diagram helps to understand how the system works and the possible
interactions and gives a general outlook of the development of the project. Note that in this
case, only actor interacts with the program but this is not always the case (Booch et al., 1999).

Define finite element

Check data

<<Use>> Assemble vector

<<Use>>

Assemble Matrix

<<Use>>

Software user

Solve equation

Figure 1. Use Case diagram for the finite element case study

Class Diagram
A class diagram represents the static structure of a given system. Classes are templates to

create objects with common characteristics, i.e., pertaining to a certain category. Within the
class diagram five main relationship can be used, namely, specialisation, association,
aggregation, composition and dependency.

There are several class diagrams for this current development. With the purpose of
illustrating this case study, only one of them is shown in Figure 2.

Due to the characteristic of the problem, the several diagrams are grouped together into
packages that must represent some kind of unity or module within the system. The class
diagram of Figure 2 displays the classes in the package vector, the relationship among the
classes as well as the kind of relationship (association or aggregation) and the cardinality.

As can be seen in the diagram, nodalDisplacementVector, loadVector and
boundaryConditionVector are specialised classes (or subclasses), derived from the abstract
class vector. The latter only exists to encompass the common attributes and methods to be use
by the child classes. Also, the method checkConsistency is inherited by the three subclasses
although each one implements its own code for the particular consistency test needed. This is
an example of the so-called polymorphism.

The main class diagram, encompassing the different packages of classes, for a given case
study can be devised. In the current system data, the following packages can be thought: data,
vectors and matrices and solution algorithms. Each should present high internal cohesion and
low coupling with other packages.

Sequence Diagram
The sequence diagram depicts a time-wise event flow for each use case. It is a two-

dimensional diagram with time represented vertically and objects (not classes) in the
horizontal position, showing the sequence of messages sent amongst the objects. The diagram
of Figure 3 displays the time sequence of events of the use case Solve equation.

Each the sequence diagram is based on the event flow created for a specific use case, e.g.,
the event flow for the use case shown in Figure 3 is:

Preconditions:
The use case matrix assembly and vector assembly must have been successfully completed

to allow for this use case to initiate.
Main Flow:
1. Receives the global stiffness matrix
2. Receives the global load vector
3. Picks up the defined solution algorithm
4. Solves the finite element equation to determine the displacements

K a = f, where K = global stiffness matrix; a = displacements vector; f = load vector
5. Sends displacements to the object myDisplacementVector of the class displacementVector.
6. Displays the results (the displacements) to the object “anybody” of the stereotyped actor

class named user.
Alternative Flow:

If an error occur during the solving process due to wrong data, the program sends the
users an error message and finishes the execution.

vector

numberPositions

getNodeData()
vectorAssembly()
consistencyCheck()
vectorStokage()

(f rom data)

loadVector

numberNodesConcentratedLoads
loads

consistencyCheck()

nodalDisplacementVector

getDisplacement()
consistencyCheck()

sti ffnessMatrix

nodeId

getElementStiffnessMatrix()

(f rom matrixSolution)

boundaryConditionVector

numberNodesBoundaryConditions
boundaryConditions

consistencyCheck()

1

1

1

1

Figure 2. Class diagram for the package vector

5. FINAL REMARKS

The paper deals with the use of object-oriented software engineering for finite element
programming in conjunction with the introduction of visual modelling techniques. The
suitability of the use of the UML is exploited and a general explanation on the subject is
given. The main points discussed are reusability, scalability, comprehensibility, reduction of
production and maintenance costs as well as prevention of errors.

The main objective was to shed some light on the subject, mainly regarded with the
association of finite elements and the new software engineering tendencies, in order to
motivate the finite element community to adopt these modern ideas.

myStiffnessMatrix :
stiffnessMatrix

myLoadVector :
loadVector

myEquationSolver :
equationSolver

myNodalDisplacementVector :
nodalDisplacementVector anybody : Software

user

1: getStiffnessMatrix()

2: getLoadVector()

3: calculateDisplacements()

4: getDisplacement()

5: getDisplacementVector()

Figure 3. Sequence diagram for the use case Solve equation

6. ACKNOWLEDGEMENT

The authors would like to express their gratitude to CNPq, FAPEMIG and FINEP for their
financial support.

7. REFERENCES

• Bittencourt, M.L., Guimarães, A.S. and Feijóo, R.A., 1999, “Elementos Finitos
Orientador por Objetos”, Revista Internacional de Métodos Numéricos para Cálculo y
Diseño en Ingeniería, Vol. 15 (3), pp. 343-355.

• Booch, G., Rumbaugh, J. and Jacobson, I., 1999, “The Unified Modelling Language
User Guide”, Addison-Wesley, Object Technology Series, 4th Printing.

• Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. and Stal, M., 1996, “Pattern-
Oriented Software Architecture: A System of Patterns”, John Wiley & Sons.

• Fowler, M. and Scott, K., 1997, “UML Distilled: Applying the Standard Object
Modelling Language”, Addison-Wesley, Object Technology Series, 11th Printing.

• Gamma, E., Helm, R., Johnson, R. and Vlissides, J. [Gang of Four], 1995, “Design
Patterns: Elements of Reusable Object-Oriented Software”, Addison-Wesley.

• Kruchten, P.B., 1995, “The 4+1 View Model of Architecture”, IEEE Software, pp. 43-
50.

• Larman, C., 1998, “Applying UML and Patterns”, Prentice Hall.
• Marczak, R. J., 1999, “Uma Revisão Parcial de Arquiteturas Orientadas a Objetos Para

Programas de Elementos Finitos”, Proceedings of the 15th Brazilian Congress of
Mechanical Engineering, CD-Rom, Águas de Lindóia, SP, Brazil.

• McKenna, F.T., 1997, “Object-Oriented Finite Element Programming: Frameworks for
Analysis, Algorithms and Parallel Computing”, PhD thesis, University of California,
Berkeley.

• Pressman, R.S., 1997, “Software Engineering: A Practitioner’s Approach”, McGraw-
Hill, 4th Edition.

• Rechtin, E., 1991, “Systems Architecting: Creating and Building Complex Systems”,
Prentice-Hall.

