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Summary

The present work simulates the behavior of a Sun-synchronous spinning satellite, using
a digital computer. The results yield an attitude control law, for maintenance of the angular
velocity and the sun aspect, by using the Earth’s magnetic field, a magnetometer as spin-rate
sensor, three magnetic coils as actuators and two sun sensors. The magnetic torque availability
is strongly dependent on the relative motion Sun-Earth-satellite and on the Sun-Earth pointing
requirements. The first step is the evaluation of the initial orbit and attitude conditions; the
second step are define and determine a coefficient, which will be used to evaluate the eddy
current effects on the satellite’s attitude. Finally, we simulate the nominal attitude behavior
considering all determined parameters and the magnetic coils maneuvers.

Guidance, navigation and control, flight dynamic and orbital dynamic.

1 – ANGULAR VELOCITY VECTOR 
!
ω  DEFINITION

To determine the orientation of the spin axis, for a Sun-synchronous spinning satellite,
on the Inertial System, the precession has to be computed. Fonseca (1995) assumed the
geomagnetic field to be parallel to spin axis, under this assumption, the satellite system must
be rotated three times, as shown in Figure 1.
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Figure 1 – Relationship between the
orientations of the satellite’s spin axis and
the geomagnetic field, in the Inertial System.



The rotation matrix R3( )ψ , denoting the precession, represents de rotation from the
inertial X - axis to the nodal line X’. The rotation matrix R1( )β  transforms the (X’Y’) plane
to the plane (X”Y”) = (x y), which is normal to the Z”- axis and parallel to the spin axis, z -
axis.  The rotation matrix R3( )α , transforms positions X” and Y” to the instantaneous
positions X”’ and Y”’, i. e., x and y. In this way the X system is transformed to the X”’
system, this means, to the x system, as follows:

X”’ = R3( )ψ R1( )β R3( )α X,                                                                                        (1)

in a the matrix notation as

X”’ = 

c s

s c c s

s c

c s

s c

α α
α α β β

β β

ψ ψ
ψ ψ

0

0

0 0 1

1 0 0

0

0

0

0

0 0 1

− ⋅
−

⋅ − X,                     (2)

in which the abbreviation θθ cos=c  and θθ sen=s  are used to save space.

Thus, xB , yB  and zB , components of the geomagnetic field B
!

, can be obtained, as follows:

( ) ( )B B c c s c s B c s s c c B s sx X Y Z= − + + +α ψ α β ψ α ψ α β ψ α β
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B B s s B s c B cz X Y Z= − +β ψ β ψ β

Where BX , BY  and BZ  are the geomagnetic field components at the Inertial System and will
be propagated with the orbital elements. But, if this data does not available at the satellite’s

onboard computer, it is possible to use B
!

 which could be obtained directly from the

magnetometer measured components xB , yB  and zB , in regions where the geomagnetic field

is nearly parallel to the Zk"  inertial direction (
!
B Zk↑ ↑ " ), through 2
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which in view of the zeros reduces to

B Bx = sen senα β , B By = cos senα β , B Bz = cosβ ,                                                     (5)

where:
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In this way the angles α andβ  could be obtained directly and this system is almost the
same as the system proposed by Fonseca (1995), in which the precession ψ  was assumed to
be null. However, for this case it is not truth and we assume the precession ψ to be very
small, but not null. Therefore, de derivative ψ#  must be kept in account on the evaluation of

the angular velocity vector 
!
ω , so:
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Thus, the angular velocity vector 
!
ω  components of the satellite, in terms of the nodal system,

were obtained from temporal derivatives α#  and β# :

ω ψ β α β αx = +# sen sen # cos , ω ψ β α β αy = +# sen cos #sen , ω ψ β αz = +# cos # ,        (8)

where α#  and β# are obtained as shown bellow:
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The derivatives were obtained as follows:
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this means, that for small time intervals one could take

,
t∆

∆≅ αα# ,
t∆

∆≅ ββ#                                                                                                (12)

where α∆  and β∆ , are
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Although this method is consistent, for the full orbit, only if the geomagnetic field 
!
B

could be propagated. If 
!
B  couldn’t be propagated the control will be consistent only on

latitudes near to the equator, this means, where the geomagnetic field 
!
B  is nearly parallel to

the Zk"  inertial direction (
!
B Zk↑ ↑ " ).

Thus, we suggest to use a well known cinematic relation (Goldstein, 1973) for evaluate
the temporal derivatives of the geomagnetic flux density vector at satellite coordinate system,
i.e.,
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Assuming that the Earth’s orbital and the angular velocities are very small compared
with the satellite’s angular velocity, this implies that we could assume the derivative ,sB# as

null, or:
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where
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Consequently the satellite’s angular velocity vector 
!
ω  could be obtained, as follows:
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where k B= ⋅" "ω , and # # #B B Bx y z

T
are given by:
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where BX , BY  and BZ  could be obtained, as follows:
 

sYsXx BsinBB αα cos+−=

sZssYssXy BsinsinBsinBB δδαδα coscos +−−=                                                  (21)

.cos δδαδα sinBsinsinBsinBB ZssYssXz ++=

A better way to obtain the satellite’s attitude is to determine it at the Inertial System,
and afterwards transform it to the nodal system, like shown in Figure 2.

Figure 2 – Relationship between the orientations
of the satellite’s spin axis and the nodal coordinate
system sα and sδ in the Inertial System.
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Because of the slow orbital and the angular velocities of the Earth, compared with the
satellite’s angular velocity, the temporal derivatives XB# , YB#  and ZB#  could be considered
constants. Where BX , BY  and BZ  could be obtained in a Geomagnetic Dipole Model like
the IGRF85 or that one published by Mead and Fairfield (American Geophysical Union,
1972) (Ferreira, et al 1987). The GEOMAG model (Lopes, et al 1983), could be found at
INPE ‘s software library as function of α s  e δs , where α s  is the right ascension and δs

declination. Thus
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Where the derivatives sα#  and sδ# , are given by:
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Finally, we have the new control variables XB# , YB#  and ZB# .

2 – INITIAL ATTITUDE ACQUISITION

The initial attitude acquisition could be made through Sun sensors, where unique
problem consists in how to make the initial Sun acquisition. The initial Sun acquisition is a
function of the threshold definition, the sun sensor quantity and it’s location on the satellite.
Prudêncio, (1997) suppose two analog Sun sensors, with a 60 mV threshold, each one. This
means two sensors with a 141o field view (141o  visibility angle in respect to the sensor’s
reference axis) each one. Assuming that the threshold’s maximum error is around 10%, the
field view will be reduced to 116o. Otherwise, Prudêncio (1997) proposed a configuration
where “sensor 1” is aligned with the satellite’s spin axis, “sensor 2” made a 135o angle with
“sensor 1” and simultaneously a 45o angle with the spin axis. Making testes for this Sun
sensor configuration, we obtain the initial Sun acquisition possibility illustrated in Figure 3.

Sensor 1

Sensor 2

Visibility
of sensor 2

Final Visibility
of sensor 2

Z = satellites spin axis

45
o

} A 25o 48’ wide
region where
the Sun sensors
couldn’t make
the Sun acqui -
sition

Sensor 1 zero
direction

Sensor 2 zero
direction

Final visibility
of sensor 1

104
o
 24’

104
0
 24’

Figure 3 - The Sun’s acquisition region for two Sun sensors with a 60 mV threshold, each
one, and 10% maximum error, that means a 116o visibility angle with a 104o24’ wide
visibility angle projection onto the Earth.

Thus we conclude that there will be a 25o 48’ wide region where any one of the two Sun
sensors acquire the Sun.



After some testes, we could define a new positioning for the two analog Sun sensors,
with same threshold definition. Where we assume that both sensors made a 45o angle with the
satellite’s spin axis and a 180o angle between them. Thus, we have the initial Sun acquisition
possibility, as illustrated in Figure 4.
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Figure 4 - The Sun’s acquisition region, for two Sun sensors with a 116o visibility
angle, where the visibility angle projection onto the Earth is 104o24’ wide. Both
sensors made a 45o angle with the spin axis and a 180o angle between them. The Sun
sensor’s field views made an overlap of 14o 24’.
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Thus we conclude that there will be a 14o 24’ wide overlap region, where both Sun sensors
could acquire the Sun simultaneously, and in this way the initial Sun acquisition is warranted.

3 - CONCLUSION

We conclude that Shigehara’s (1972) method for equatorial spinning satellites could be used
also for polar spinning satellites, as proposed by Prudêncio (1997). For autonomous control is

it necessary to take Zk"  approximately parallel to B
!

, but this is truth only near the equatorial
region. Thus, for this kind of control is it necessary to propagate at least the orbital elements
on the onboard computer, and to fix previously the regions where the autonomous control
system should be turned on or of. Otherwise, if the computer has sufficient memory for

propagate the geomagnetic density field B
!

, together with the orbital elements, all decisions
could be made, in real time, by the onboard computer as function of the actual angle between

B
!

 and k̂Z .
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