IDENTIFICAÇÃO DE PARÂMETROS MATERIAIS E ESTRUTURAIS NO DOMÍNIO DA FREQÜÊNCIA

João Morais da Silva Neto (joaoneto@emc.ufsc.br)

José João de Espíndola (espindol@mbox1.ufsc.br)

Universidade de Federal de Santa Catarina - Departamento de Engenharia Mecânica Florianópolis - SC, Caixa Postal: 476, Tel.: 55(0)48-331-9278

Resumo

Este trabalho apresenta um nova metodologia para se determinar a rigidez equivalente de secções retas de vigas e o respectivo fator de perda. Entre essas estruturas, enfatizam-se cabos utilizados nas linhas de transmissão elétrica. Para se mensurar tais parâmetros, fez-se uso de três modelos matemáticos. O primeiro é um modelo com dois graus de liberdade. O segundo é baseado no método dos modos assumidos. O terceiro e último, no método dos elementos finitos. Um dispositivo muito semelhante a um neutralizador de Stockbridge foi utilizado nos experimentos. Este dispositivo é aqui chamado PED (Pêndulo Elástico Duplo). Funções Resposta em Freqüências (FRF) foram obtidas dos PED's e ajustadas ao modelo teórico obtido através da modelagem. Uma função objetivo, definida a partir do modelo teórico, é minimizada por meio de técnicas de otimização não-linear. Os resultados numéricos dos três modelos são comparados e discutidos.

Palavras-chave: identificação de parâmetros, fator de perda, otimização, módulo de elasticidade,

1. INTRODUÇÃO.

Características de rigidez à flexão de seções retas de vigas e fator de perda estrutural são de difíceis avaliação, quando se consideram seções complexas, como as de cabos trançados e de estruturas compostas metal-elastômero. Por exemplo, o amortecimento intrínseco de cabos ACSR (*Aluminum Conductor Steel Reinforced*) é fator importante para o projeto de linhas de transmissão de energia elétrica.

Não raro, o amortecimento de cabos é fornecido pelo decremento logarítmico medido em um certo vão experimental. Isto é errado, já que o decremento logarítmico não é uma medida intrínseca do cabo, mas um parâmetro estrutural que leva em conta o tamanho do vão, entre outros fatores. O decremento logarítmico é um parâmetro estrutural, não material.

Neste trabalho, modelos de otimização não-linear são desenvolvidos para a identificação da **rigidez complexa equivalente** da seção reta de uma viga, como por exemplo, um cabo trançado.

A rigidez complexa equivalente é um número complexo que contém os parâmetros de rigidez à flexão da seção reta e o fator de perda.

2. GÊNESE E CONCEITOS IMPORTANTES.

A necessidade de conhecer e controlar vibrações é tão antiga quanto os primeiros estudos em matemática. Um dos primeiros a estudar fenômenos vibratórios, segundo Dimarogonas (1990), foi o filósofo grego Pitágoras de Samos (570-497 a.C.), que estudou vibrações em cordas e o som provocado por elas. Cabos de linhas de transmissão estão incessantemente sujeitos a ação de ventos e outras intempéries. Os ventos, ao incidirem nos cabos, podem produzir uma excitação por desprendimento de vórtices, o que proporciona uma oscilação indesejável no mesmo. Esses vórtices são conhecidos como vórtices de *von Karman* e as oscilações geradas, como vibrações auto-excitadas, Teixeira (1997).

O amortecimento do cabo é fator importante para minimizar a sua vibração eólica. O amortecimento do cabo é representado pelo fator de perda (η). Lazan (1968) conceituou amortecimento estrutural e material . Uma outra grandeza de difícil cômputo em cabos e outras seções é a rigidez à flexão (*EI*). Tal grandeza é normalmente calculada através de formulas empíricas, aproximadas e de difícil confirmação, Silva Neto (1999). A importância de tais grandezas é fundamental no projeto das linhas de transmissão e na construção de neutralizadores de Stockbridge, pois tanto em um caso como no outro, a presença de baixo amortecimento é de natureza danosa à vida útil dos mesmos. Necessita-se, assim, de conhecêlos.

O conceito de rigidez complexa é de grande importância para um melhor entendimento deste trabalho. Sua origem reside na modelagem de materiais viscoelásticos, sendo o módulo de elasticidade uma grandeza complexa (E) e o fator de perda, uma grandeza real, Snowdon (1969) e Espíndola (1987). Ambos variam com a freqüência e a temperatura, equações (1) a (3).

$$E(\Omega, \theta) = E_r(\Omega, \theta) + iE_i(\Omega, \theta)$$
⁽¹⁾

ou
$$E(\Omega, \theta) = E_r(\Omega, \theta)(1 + i\eta(\Omega, \theta)),$$
 (2)

onde,
$$\eta(\Omega, \theta) = \frac{E_i(\Omega, \theta)}{E_r(\Omega, \theta)}.$$
 (3)

Verifica-se que a energia dissipada e a resposta harmônica em estruturas reais não mostram uma proporcionalidade com a freqüência. Tal dependência existe sim, mas com uma lei bem mais complexa. Esta relação é constatada de forma experimental. No caso de estruturas não compostas com materiais viscoelásticos, ou em que estes trabalhem na região I (de alta resiliência), esta dependência é muito pequena, de sorte que pode ser desprezada Snowdon (1968). Neste caso, tanto o módulo de elasticidade, quanto o amortecimento, podem ser escritos da seguinte forma:

$$E = E_r \left(1 + i\eta \right) \tag{4}$$

e

$$\eta = \frac{E_i}{E_r}.$$
⁽⁵⁾

3. MODELAGEM E DESENVOLVIMENTO.

3.1 Modelo de Dois Graus de Liberdade.

Este modelo consta de uma viga sem massa e engastada em uma base, com uma massa de sintonia na extremidade, esta sujeita a movimentos de translação e rotação (fig.1). A matriz de rigidez, o vetor de coordenadas generalizadas e a rigidez a flexão são, respectivamente, K, q e EI e são expressos abaixo.

Figura 1 - Representação física para o modelo com dois graus de liberdade

Na expressão acima, tem-se: η - fator de perda do "material" da viga; m_b - metade da massa da base;

. . . .

 m_c - massa do corpo (massa de sintonia);

 J_c - momento de inércia do corpo de sintonia em relação a um eixo normal ao plano do papel

passando pelo centro de gravidade G;

e - distância desde o fim da viga ao centro de gravidade da massa de sintonia;

 $q_{l}(t)$ - coordenada do deslocamento da massa de sintonia, no ponto de engaste da viga;

 $q_2(t)$ - coordenada da rotação da massa de sintonia;

y(t) - deslocamento da base;

f(t) - força excitadora.

As energias cinética e potencial são:

$$T = \frac{1}{2}m_{c}(\dot{y}(t) + \dot{q}_{1}(t) + e\dot{q}_{2}(t))^{2} + \frac{1}{2}J_{c}\dot{q}_{2}^{2}(t) + \frac{1}{2}m_{b}\dot{y}^{2}(t)$$
e
$$V = \frac{1}{2}q^{T}Kq - f(t)y(t).$$
(8)

Substituindo em (7) e (8) às equações de Lagrange, obtém-se:

$$\begin{bmatrix} m_{c} & e m_{c} & m_{c} \\ e m_{c} & e^{2} m_{c} + J_{c} & e m_{c} \\ m_{c} & e m_{c} & (m_{b} + m_{c}) \end{bmatrix} \begin{bmatrix} \ddot{q}_{1} \\ \ddot{q}_{2} \\ \ddot{y} \end{bmatrix} + \begin{bmatrix} K_{11} & K_{12} & 0 \\ K_{21} & K_{22} & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} q_{1} \\ q_{2} \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ f(t) \end{bmatrix},$$
(9)

resultado que pode ser escrito na seguinte forma:

$$\begin{cases} \begin{bmatrix} m_c & e m_c \\ e m_c & e^2 m_c + J_c \end{bmatrix} \begin{bmatrix} \ddot{q}_1 \\ \ddot{q}_2 \end{bmatrix} + \begin{bmatrix} m_c \\ e m_c \end{bmatrix} \ddot{y} + \begin{bmatrix} K_{11} & K_{12} \\ K_{21} & K_{22} \end{bmatrix} \begin{bmatrix} q_1 \\ q_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$[m_c & e m_c]^T \begin{bmatrix} q_1 \\ q_2 \end{bmatrix} + (m_b + m_c) \ddot{y} = f(t)$$
(10)

Fourier transformando ambos os membros das expressões (10) e após algumas manipulações algébricas, tem-se a expressão da massa dinâmica (FRF):

$$M(\Omega) = \frac{\mathrm{F}(\Omega)}{-\Omega^{2}\mathrm{Y}(\Omega)} = (m_{\mathrm{b}} + m_{\mathrm{c}}) + \Omega^{2}m_{\mathrm{L}}^{\mathrm{T}} \left[-\Omega^{2}M + K\right]^{-1} m_{\mathrm{L}}, \qquad (11)$$

onde $F(\Omega) \in Y(\Omega)$ são transformadas de Fourier de f(t) e y(t), respectivamente.

A obtenção numérica da inversa de $-\Omega^2 M + K$, contida na equação (11), de forma direta não é recomendável, pois na região de ressonância pode-se ter mal condicionamento. Optouse, então, por uma expressão da massa dinâmica como escrita abaixo

$$M(\Omega) = (m_{\rm b} + m_{\rm c}) + \Omega^2 m_{\rm L}^{\rm T} \Phi \left[-\Omega^2 I + \Lambda \right]^{-1} \Phi^{\rm T} m_{\rm L} \quad , \qquad (12)$$

onde Φ é a matriz modal e Λ a matriz espectral do problema $K\phi = \lambda M\phi$.

3.2 Método dos Modos Assumidos.

Neste método o sistema físico é modelado com n graus de liberdade, cada grau representado por uma função especial $\psi_j(x)$, j = 1, n. A massa da viga é considerada distribuída e uniforme:

$$\omega(x,t) = y(t) + \theta(t)x + \sum_{j=1}^{n} \psi_{j}(x) \cdot q_{j}(t) .$$
(13)

Figura 2 - Modelo físico para o método dos modos assumidos

Em (13) tem-se:

 $\omega(x,t)$ - deslocamento total da viga na coordenada x,

- y(t) deslocamento da base,
- $\theta(t)$ rotação da base,

A figura 2 mostra, adicionalmente,

 $f_{y}(t)$ - componente da força excitadora responsável pela translação,

 $f_{\theta}(t)$ - componente da força excitadora responsável pela rotação.

Tal qual no modelo de dois graus de liberdade, aqui também fez-se o uso das equações de Lagrange. As expressões das energias cinética e potencial são:

$$T = \frac{1}{2} \int_{0}^{L} \rho(x) \left[\frac{\partial \omega(x,t)}{\partial t} \right]^{2} dx + \frac{1}{2} m_{c} \left\{ \frac{\partial}{\partial t} \left[\omega(L,t) \right] + e \, \omega'(L,t) \right\}^{2} + \frac{1}{2} J_{c} \left[\frac{\partial \omega'(L,t)}{\partial t} \right]^{2}$$
(14)

$$e \\ V = V_{e}(t) - f_{y}(t) y(t) - f_{\theta}(t) \theta(t)$$
(15)

onde L é o comprimento da viga e $\omega'(x,t)$ é a derivada espacial de $\omega(x,t)$

No presente modelo, a variável $\theta(t)$ é tomada zero, pois considera-se que a base não está sujeita a momentos torcionais e que o sistema é simétrico, o que simplifica o sistema de equações:

$$\begin{bmatrix} a & m_{1} & \cdots & m_{n} \\ m_{1} & m_{11} & \cdots & m_{1n} \\ \vdots & \vdots & \vdots & \vdots \\ m_{n} & m_{n1} & \cdots & m_{nn} \end{bmatrix} \begin{bmatrix} \ddot{y} \\ \ddot{q}_{1} \\ \vdots \\ \ddot{q}_{n} \end{bmatrix} + \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & k_{11} & \cdots & k_{1n} \\ \vdots & \vdots & \vdots & \vdots \\ 0 & k_{n1} & \cdots & k_{nn} \end{bmatrix} \begin{bmatrix} y \\ q_{1} \\ \vdots \\ q_{n} \end{bmatrix} = \begin{bmatrix} f_{y} \\ 0 \\ \vdots \\ 0 \end{bmatrix}.$$
(16)

Na forma particionada, tem-se

$$\begin{bmatrix} M_1 & \vdots & M_2 \\ \cdots & \vdots & \cdots \\ M_3 & \vdots & M_4 \end{bmatrix} \begin{bmatrix} \ddot{y} \\ \vdots \\ \ddot{q} \end{bmatrix} + \begin{bmatrix} K_1 & \vdots & K_2 \\ \cdots & \vdots & \cdots \\ K_3 & \vdots & K_4 \end{bmatrix} \begin{bmatrix} y \\ \cdots \\ q \end{bmatrix} = \begin{bmatrix} f_d \\ \cdots \\ 0 \end{bmatrix}.$$
(17)

Ao se aplicar a transformada de Fourier em (17) e levar a cabo algumas manipulações algébricas, obtém-se a seguinte expressão para a massa dinâmica:

$$M(\Omega) = M_{I} + \Omega^{2} M_{2} \Phi \left[-\Omega^{2} I + \Lambda \right]^{-1} \Phi^{T} M_{3}.$$
⁽¹⁸⁾

3.3 Método de Elementos Finitos.

Para este método adotou-se o modelo de viga *Euler-Bernoulli*. A viga foi dividida em dez elementos, cada elemento com dois graus de liberdade por nó, desprezando-se os esforços cisalhantes. A partir das matrizes de massa (m) e rigidez (k) elementares, monta-se a equação geral do movimento:

$$m = \frac{\rho A h}{420} \begin{bmatrix} 156 & 22h & 54 & -13h \\ 22h & 4h^2 & 13h & -3h^2 \\ 54 & 13h & 156 & -22h \\ -13h & -3h^2 & -22h & 4h^2 \end{bmatrix}, \ k = \frac{EI}{h} \begin{bmatrix} \frac{12}{h^2} & \frac{6}{h} & -\frac{12}{h^2} & \frac{6}{h} \\ \frac{6}{h} & 4 & -\frac{6}{h} & 2 \\ -\frac{12}{h^2} & -\frac{6}{h} & \frac{12}{h^2} & -\frac{6}{h} \\ \frac{6}{h} & 2 & -\frac{6}{h} & 4 \end{bmatrix}.$$
(19)

$$\begin{cases} M_{EF} \ddot{u}(t) + mt \ddot{y}(t) + K_{EF} u(t) = 0\\ mt^{T} \ddot{u}(t) + (m_{b} + m_{c}) \ddot{y}(t) = f(t) \end{cases},$$
(20)

Em (19) ρ é a densidade do material da viga, *h* o tamanho do elemento e *A* à área da seção reta da viga. M_{EF} e K_{EF} são as matrizes globais particionadas. Estas são obtidas a partir das equações de Lagrange. O vetor *mt* é resultante do desacoplamento, ou melhor, da partição das expressões obtidas. u(t) é o vetor de coordenadas generalizadas. Feito isto, eliminam-se as duas primeiras linhas e colunas das matrizes de massa e rigidez global, pois as componentes $u_1(t)$ e $u_2(t)$ assumem o valor zero, por estarem fixas à base. Então, o novo sistema de equações reduzido é:

$$\begin{cases} M_{EF}^{*} \ddot{u}(t)^{*} + mt^{*} \ddot{y}(t) + K_{EF}^{*} u(t)^{*} = 0\\ mt^{*T} \ddot{u}(t)^{*} + (m_{b} + m_{c}) \ddot{y}(t) = f(t) \end{cases},$$
(21)

onde M_{EF}^* , K_{EF}^* e mt^* são as novas matrizes globais e o novo vetor resultante particionado. O vetor de coordenadas generalizadas também é reduzido, e passa a ser escrito $u^*(t)$, sem as respectivas componentes que assumiram valor zero. Como nos itens anteriores aplica-se a transformada de Fourier e, após uma breve manipulação algébrica, tem-se a massa dinâmica através do modelo de elementos finitos.

$$M(\Omega) = (m_{b} + m_{c}) + \Omega^{2} m t^{*T} \Phi_{EF} \left(-\Omega^{2} I + \sum_{EF} \right)^{-1} \Phi_{EF}^{T} m t^{*}$$
(22)

4. FUNÇÃO OBJETIVO OU CUSTO.

Nesta etapa foi criada uma função objetivo a ser minimizada por técnicas de otimização não linear. O método utilizado foi o da variável métrica ou DFP (Davidon-Fletcher-Powell). Para compor a função objetivo foram utilizadas duas FRF's, uma experimental e a outra teórica (modelagem matemática). A curva experimental utilizada foi obtida do ensaio de um neutralizador de Stockbridge, este utilizado como PED por uma questão de facilidade.

Figura 3 - As figuras acima são o neutralizador utilizado como PED (figura à esquerda) e sua respectiva função resposta em freqüência obtida experimentalmente (figura à direita).

A diferença ente o modelo teórico e o experimental é o erro (24):

$$E(\Omega) = M(\Omega) - \overline{M}(\Omega), \qquad (24)$$

onde $M(\Omega)$ é a massa dinâmica, expressões (12),(18), ou (22), conforme o modelo usado. $\overline{M}(\Omega)$ é a FRF medida e $E(\Omega)$, o erro. A função custo (objetivo), a ser minimizada será: $f(x, \Omega) = E(\Omega) \cdot E^*(\Omega)$, (25) onde x é um vetor de projeto, dado por $x = [e, J_c, EI_r, EI_i, \lambda_r^1, \lambda_r^2, \eta_1, \eta_2, R_r, R_i]^T$. (26) Neste vetor, o índice *r* significa parte real, *i*, *a* parte imaginária e os números 1 e 2, referem-se ao primeiro e segundo modos. *R* significa resíduo.

4. RESULTADOS E CONCLUSÕES.

As FRF's (massas dinâmicas) foram obtidas pela excitação, na raiz do Stockbridge, e concomitante medição, no mesmo ponto, da aceleração.

Os resultados dos três modelos, para os dois primeiros modos, são virtualmente iguais (vide tabela 1, fig. 4 e 5). Construíram-se outros PED's, de aço, nylon e alumínio de rigidez EI_r já previamente conhecida. Este parâmetro (bem como o fator de perda) foi identificado com resultado excepcional. Esses últimos resultados são aqui omitidos, por brevidade.

Tabela 1 - Tabela comparativa dos métodos utilizados, com os parâmetros mais importantes.

	EI_r	$EI_i(10^{-2})$	$e(10^{-3})$	$J_c (10^{-3})$	$\eta (10^{-3})$	λ_{l}	$\eta_1(10^{-2})$	λ_2	$\eta_2(10^{-2})$
DGL	3,6196	1,9807	8,6709	0,3782	5,4721	19,3871	0,4973	89,355	1,1554
MA	3,7079	2,0699	8,3825	0,8674	5,5824	19,3775	0,4557	89,352	1,1895
MEF	3,7336	2,0277	8,51703	0,3843	5,4310	19,3320	0,2578	89,201	1,3072

Figura 4 - Gráfico comparativo entre a FRF experimental e as obtidas pelos métodos apresentados. Note-se a perfeita superposição dos resultados dos vários métodos.

MEF MA DGL EXP

100 105 110 115

(a)

(b)

Figura 5 - Gráficos com maior resolução do modos identificados: (a) primeiro modo, (b) segundo modo

4. REFERÊNCIAS BIBLIOGRÁFICAS.

- [01] DIMAROGONAS, A. D., *The Origins of Vibration Theory*, Journal of Sound and Vibration, 1990, 140(2), pp. 181-189.
- [02] ESPÍNDOLA, J. J., <u>Apostila de Controle de Vibrações</u>, Curso de Pós-Graduação em Engenharia Mecânica, 1987, UFSC, Santa Catarina.
- [03] LAZAN, B. J., <u>Damping of Materials and Members in Structural Mechanics</u>, 1968, Pergamon Press, Oxford.
- [04] SILVA NETO, J. M., Identificação de Parâmetros Materiais e Estruturais no Domínio da Freqüência, Dissertação de Mestrado, 1999, UFSC, Santa Catarina.
- [05] SNOWDON, J. C., <u>Steady State Behaviour of the Dynamic Absorber</u>, The Journal of the Acoustical Society of America, 1959, vol. 31, N^o. 8, pp. 1096-1103.
- [06] SNOWDON, J. C., <u>Vibration and Shock in Damped Mechanical Systems</u>, 1968, John Wiley & Sons, New York.
- [07] TEIXEIRA, P. H., <u>Controle de Vibrações em Cabos Singelos das Linhas de</u> <u>Transmissão Aéreas de Energia Elétrica Através de Neutralizadores</u> <u>Viscoelasticos</u>, Dissertação de Mestrado, 1997, UFSC, Santa Catarina.