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Abstract

In this work, the mathematical analysis of the transient motion of a cylindrical vessel is
presented. The vessel is supposed to be axisymmetric and the thin shell theory is used in the
derivation of the equations of motion of the shell. The Finite Element Method is used in the
solution of  the shell, and curved elements of varying meridian’s curvature are adopted. A
solution of the shell dynamic equations is obtained through displacement functions which
depict the several possible circumferential modes in terms of sines and cosines of θn , where n
is an integer and θ  is the circumferential angular coordinate. Finally, the Newmark procedure
is adopted to solve the vibration problem in the time domain. Typical results of the transient
analysis are presented and the natural frequencies of the combined circumferential and
meridional modes show good agreement compared to results obtained with the NASTRAN
Finite Element software.
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1. SHELL EQUATIONS

       The thin shell theory used in this work may be classified as a bending theory and assumes
the presence of all the internal stress components except for shear stresses normal to the
neutral surfaces, which are neglected. In using this theory to obtain the shell equations of
motion, some assumptions and fundamental references have to be considered: (a)The material
of the shell is homogeneous, isotropic and linearly elastic, following Hookes’s law; (b) The
geometry of the shell is axisymmetric; (c) The strain-displacement and the stress-strain
relationships are based on Novozhilov (1970); (d) The shell element used is a two node
axisymmetric element of varying meridional curvature (curved element); (e) The displacement
functions follow the approach of Ross et al.(1983,1986,1987); (f) The strain-displacement
relationships of Novozhilov (1970) are:
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Figure 1.  Shell of revolution. meridional profile

where θ  is the circumferential angle, φ is the meridional angle, r is the circumferential radius

of the shell, φR  is the meridional radius of the shell, s is a distance along the meridian, θε  is

the circumferential strain, φε  is the meridional strain φθε is the shear strain in the φθ  plane, θk

is the circunferential curvature, φk  is the meridional curvature, φθk is the twist in the φθ  plane,

u is the meridional displacement of the shell, v is the circumferential displacement of the shell,
and w is the displacement perpendicular to meridian of the shell.
       The assumed displacement functions according to Ross (1983) are:
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 where β  is the rotational displacement of the shell, n is the circumferential wave number, "  is

half the shell element meridional length,  
"

s
=ξ   is the local element coordinate which varies

from +1 (node i) to -1 (node j) and iu , iv  , iw , iβ , ju , jv  , jw , jβ , are nodal displacement

values at nodes i and j, respectively.
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Figure 2.  Curved element of varying meridional curvature. Representation of
normalised coordinate and node identification. (Component v is orthogonal to w and u

and outward from the plane of the figure).
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Figura 3.  Curved element of varying meridional curvature. Representation of
geometrical parameters. (Component v is orthogonal to w and u and outward from the

plane of the figure).



       The displacements u, v, w and β  are assumed to have relative directions as shown in

Figure 3. They may be expressed as a matrix product of the shape functions [ ]N and the nodal

displacement vector { }kU  as,
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The displacement functions given by Equations (7), (8) and (9) may be replaced in
Equations (1) to (6) to give,

{ } [ ]{ }kUB=ε                                                                                                                 (14)
where
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The relations between forces, moments and deformations can be expressed for the
axisymmetric case in a matrix notation as

{ } [ ]{ }ε=σ D                                                                                                                 (17)
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whrere φN  and θN  are direct forces per unit length parallel to φ(meridional) and θ
(circumferential) axes respectively, φθN  is the shear force per unit length parallel to φ axis on

face with θ as normal, φM  and θM  are bending moments per unit length about φ and θ  axes

respectively and φθM  is the twisting moment per unit length about φ axis on face with θ  as

normal. 



2. SOLUTION OF THE SHELL MATRIX DIFFERENTIAL EQUATIONS

The shell matrix differential equations may be represented as

[ ]{ } [ ]{ } { }RcKcM =+��                                                                                                       (20)

where { }c , { }c� and { }c��  are a generalised definition of displacement, velocity and accelerations
vectors respectively. To solve the matrix differential equations above, the Newmark scheme
may be employed (Wood, 1990). In Newmark scheme, the first derivative { }c� and the function

{ }c  itself are aproximated at the (n+1)th time step by the following expressions
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where α βe  are parameters that control the accuracy and atability of the scheme. The choice

2
1=α   and 

4
1=β  is known as the “constant-average-accelerations method [7].

Rearranging Equation (48) and replacing { } 1nc +  and { } 1nc +
��  in Equation (46) one arrives

at
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3. SIMULATIONS OF AN INITIAL DISPLACEMENT

Figure 4. Linearly varied loads applied on the cylindrical vessel along the meridional direction.



       Preliminary tests with the shell program have shown that the meridional mode shape is
very much dependent on the type of excitation. If one applies an initial concentrated load at the
top of the wall, all meridional modes will be excited simultaneously. Consequently, the
identification of a natural frequency becomes more difficult and a decoupling procedure had to
be considered. In order to stimulate a “pure” beam-type mode, several forms of external load
were tested and the one which best reproduces the shape of this mode is a triangularly
distributed force. The load is linearly varied from zero at the button, to a maximum value at the
top of the shell. These forces are applied on the wall for a certain  number of iterations to
create an initial displacement. Then velocities and accelerations are set equal to zero and with a
stored strain energy, the shell is released to vibrate.

4. NUMERICAL RESULTS

       A certain model of a thin walled cylindrical vessel was select  for the purpose of
comparison. The cylinder was fixed at the button end and kept free at the top end. The adopted
geometrical and physical properties of the material were: (a) Circumferential radius of the shell
= 0.1 m; (b) Longitudinal  length of the cylinder = 0.4m; (c) Shell thickness = 0.0005 m; (d)
Elasticity modulus = 211 m/N10x07.2 ; (e) Density = 3m/kg7800 ; (f) Poison ratio = 0.3; (g)
Number of elements = 40.

Figure 5. Displacement w  versus time for wave number n = 2.

        A typical result of the transient analysis is shown in Figure 5 which shows the time history
of the normal displacement w at the top of the cylinder. The figure corresponds to a case
where n = 2 , where a predictable undamped response is obtained.  From this kind of analysis,
estimates of the natural frequencies of the shell were made. The time when the first cross-over
of the curve with the time axis occurs is taken as a reference. When the first lower half cycle is
completed, the time of the second cross-over is recorded. Assuming that the characteristic
period of the oscillatory motion remains unchanged, the period of the first lower half cycle can
be doubled and inverted for the calculation of the frequency.
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       A model, with the same geometrical and physical properties cited above, was created with
help of  NASTRAN software. NASTRAN mesh was built considering 12 rectangular four
noded elements in the meridional direction and 18 elements in the circumferential direction . In
order to compare results, 6 cases were select and simulated with the present theory and the
NASTRAN software. The cases chosen were the circumferential numbers 1, 2, 3, 4, 5 and 6,
coupled with the first meridional mode. The results of both methods are presented in Table 1
and Figure 6.

Table 1. Natural frequencies obtained by the present theory (Myshell) and NASTRAN

Wave number n Natural frequency (Hz) – Myshell Natural Frequency (Hz) – NASTRAN

1 919,41 921,36

2 366,95 369,05

3 205,61 207,88

4 209,96 215,32

5 301,53 307,36

6 440,09 434,21

Figure 6. Natural frequencies of  obtained with the present theory and NASTRAN
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5. COMMENTS AND CONCLUSIONS

     The purpose of this work was to present further details and make a more precise
comparison of the proposed theory with a widely used finite elements software. Details of the
Newmark method applied to the finite elements matrix equations of motion were presented. A
method for obtaining a free undamped vibration motion through an initial and appropriate
excitation was depicted.
       As one can see in Figure 5 the cylinder response to  an initial triangular distributed load
reveals a consistent succession  of constant periods of the vibration cycles with no amplitude
reduction, as predicted by the theory. Furthermore, the natural frequencies obtained through
the present theory and the NASTRAN finite element software were compared and showed a
good degree of correlation.
       Although one can use a known finite element software, as NASTRAN, to solve a shell
vibration problem, it should be emphasised that in coupled problem, as in fluid-structure
interaction problems (Menezes et al., 1993, 1995, 1997) such softwares still present
limitations.
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