MÉTODOS DE DETECÇÃO E ANÁLISE DE SINAIS DE VIBRAÇÃO UTILIZANDO FATOR DE CRISTA E CURTOSE PARA DEFEITOS EM ROLAMENTOS

Antonio Almeida Silva & Cícero da Rocha Souto

Universidade Federal da Paraíba, Centro de Ciências e Tecnologia, Departamento de Engenharia Mecânica, Av. Aprígio Veloso, 882, 58.109-970, Campina Grande, PB, Brasil. E-mail: <u>almeida@dem.ufpb.br / cicero@dem.ufpb.br</u>

Resumo

Para a caracterização de sinais temporais induzidos por defeitos mecânicos que geram forças de excitação impulsivas periódicas, indicadores específicos tais como o valor *rms*, fator de crista e curtose tem sido usados. O valor *rms*, que caracteriza apenas a energia do sinal, e não a sua forma, não permite informar sobre a origem da excitação. Já os indicadores fator de crista e curtose são bastante usados no monitoramento de máquinas rotativas como suporte para a manutenção preditiva, especialmente na detecção de falhas em rolamentos. O problema é que nem sempre estes indicadores são utilizados de forma correta, podendo levar a interpretações pouco confiáveis. Através de um modelo simples, as propriedades e limitações destes indicadores são demonstradas e ilustradas com exemplos físicos reais. Os sinais de vibração são analisados por técnicas no domínio do tempo e da frequência e a validação do modelo é conduzida a partir de sinais reais medidos após o surgimento de defeitos pontuais localizados em rolamentos.

Palavras-chave: Detecção de falhas, Manutenção preditiva, Sinais de vibrações.

1. INTRODUÇÃO

Nos sistemas mecânicos rotativos, é bastante comum o desenvolvimento de falhas em componentes devido aos problemas a que estes são expostos como desalinhamentos e desbalanceamentos, montagens inadequadas, lubrificação deficiente, sobrecargas imprevistas, desgastes por contaminação e fadiga dos elementos. Estes fatores justificam as razões pelas quais verifica-se o constante interesse pela implantação de manutenção preditiva por análise de vibrações em instalações industriais. Em geral, o procedimento consiste basicamente na aquisição dos sinais de vibração através de sensores, seguido da análise destes sinais a partir de técnicas e indicadores que podem detectar o surgimento e desenvolvimento de falhas nos componentes. No caso de sinais temporais induzidos por defeitos mecânicos que geram forças de excitação impulsivas periódicas, indicadores como o valor *rms*, fator de crista e curtose tem sido usados em sistemas de monitoramento, embora nem sempre de forma correta. Neste trabalho, procura-se validar um modelo proposto por Pachaud *et al.* (1997) que permite uma melhor compreensão das propriedades e limitações destes indicadores bem como verificar a sua sensibilidade em relação à frequência de rotação quando aplicados em situações físicas reais, como no caso de defeitos localizados nas pistas de rolamentos.

2. MODELO DE RESPOSTA DE VIBRAÇÃO

Uma resposta vibratória de ressonância pode ser modelada por um sistema de 1 gdl com amortecimento viscoso. As respostas impulsivas do sistema podem ser representadas pela função s (Figura 1), definida por

$$s(t) = A e^{-t/\tau} \sin(2\pi f_L t)$$
⁽¹⁾

onde:

 $\begin{aligned} \tau &= Q/\pi f_o \text{ representa o tempo de relaxação;} \\ f_{\scriptscriptstyle L} &= f_o \sqrt{1 - 1/4Q^2} \text{ é a frequência de vibração livre;} \\ f_o \text{ é a frequência de ressonância;} \\ Q &> 1/2 \text{ é o fator de qualidade.} \end{aligned}$

A transformada de Hilbert permite o cálculo do envelope do sinal:

 $\widetilde{s}(t) = H[s(t)] = -A e^{-t/\tau} \cos(2\pi f_{T} t).$

$$env(t) = \sqrt{s^2(t) + \tilde{s}^2(t)} = Ae^{-t/\tau}$$
 (2)

onde:

$$\begin{array}{c}
 1 \\
 0.8 \\
 0.6 \\
 0.4 \\
 0.2 \\
 0.4 \\
 0.2 \\
 0.4 \\
 0.2 \\
 0.4 \\
 0.6 \\
 -0.4 \\
 0.6 \\
 0.4 \\
 0.01 \\
 0.02 \\
 0.03 \\
 0.04 \\
 0.05 \\
 0.06 \\
 0.06 \\
 0.01 \\
 0.02 \\
 0.03 \\
 tempo(s)$$

Figura 1. Resposta ao impulso do sistema de 1 gdl com amortecimento.

3. FATOR DE CRISTA

3.1 Envelope do fator de crista de um sinal

Para modelar o envelope de resposta à uma excitação através de uma sequência de funções de impulso de passo constante T_d , considere o sinal representado pela função *env*' definida por (Figura 2a):

$$env'(t) = env(t) * \sum_{k=0}^{\infty} \delta(t - kT_d)$$
(3)

Neste caso, o fator de crista do sinal pode ser escrito como:

$$Fc[env'] \approx \frac{Pico[env(t)]}{\sqrt{\frac{1}{T_d} \int_0^\infty env^2(t)dt}} = \sqrt{\frac{2\pi}{Q}} \sqrt{\frac{f_o}{f_d}} = \sqrt{2} \sqrt{\frac{T_d}{\tau}}$$
(4)

onde $f_d = 1/T_d$ é a frequência de repetição dos impulsos.

3.2 Resposta do fator de crista de um sinal

De maneira análoga, considerando a resposta do sistema definida pela função (Figura 2b):

$$s'(t) = s(t) * \sum_{k=0}^{\infty} \delta(t - kT_d)$$
⁽⁵⁾

O fator de crista do sinal é entretanto igual a

$$Fc[s'] = Fc(Q) \sqrt{\frac{f_o}{f_d}} = 2k(Q) \sqrt{\frac{T_d}{\tau}}$$
(6)

As expressões dos coeficientes k(Q) e Fc(Q) são listadas no apêndice A.

Figura 2. Envelope da resposta (a) e resposta de excitação impulsiva periódica (b).

Os fatores de crista dos sinais representados pelas funções s' e env' são relacionadas por

$$Fc[s'] = \sqrt{2} k(Q) Fc[env']$$
⁽⁷⁾

Estas relações mostram que o fator de crista da resposta do sinal é:

- situada entre 1,4 $\sqrt{T_d/\tau} < Fc[s'] < 2 \sqrt{T_d/\tau}$;
- Fc[s'] é proporcional à relação $\sqrt{f_o/f_d}$, logo é inversamente proporcional à $\sqrt{f_{rot}}$;
- situada entre $1Fc[env] < Fc[s'] < \sqrt{2} Fc[env]$.

Notar que para $T_d = 3\tau$, o valor de Fc[s'] fica entre 2,49 e 3,46. Para um sinal do tipo aleatório, observa-se que a amplitude de pico se situa entre 3 e 5 vezes o valor *rms*. Logo, o fator de crista deste sinal deve-se situar entre 3 e 5. Assim, o fator de crista como indicador de defeito induzido por forças de natureza impulsiva periódica só deve ser capaz de detectar este tipo de defeito se seu valor for superior a 5.

4 CURTOSE DO SINAL

4.1 Curtose do sinal de resposta

A curtose do sinal de resposta é dada por

$$Kt[s'] \approx \frac{\frac{1}{T_d} \int_0^\infty s^4(t) dt}{\left[\frac{1}{T_d} \int_0^\infty s^2(t) dt\right]^2} = k(Q) \frac{f_o}{f_d} = \frac{6Q^2}{4Q^2 + 3} \frac{T_d}{\tau}$$
(8)

Neste caso, o valor da curtose do sinal de reposta é:

- situado entre $1,26 T_d / \tau < Kt(s') < 1,5 T_d / \tau$;
- proporcional ao quociente f_o/f_d ;
- inversamente proporcional à f_{rot} e não independente, conforme sugerido nos trabalhos de Dyer & Stewart (1978) e Rush (1979).

Notar que para $T_d = 3\tau$, o valor de curtose se situa entre 3,8 e 4,5. Para um sinal do tipo aleatório, Kt = 3. Na prática, a curtose como indicador de defeitos induzidos por choques só é capaz de identificar defeitos se o seu valor for de no mínimo 3,5 (Pachaud *et al.*,1997).

4.2 Curtose do envelope do sinal

A curtose do envelope do sinal, pode ser definida por:

$$Kt[env'] \approx \frac{\frac{1}{T_d} \int_0^\infty env^4(t) dt}{\left[\frac{1}{T_d} \int_0^\infty env^2(t) dt\right]^2} = \frac{\pi}{Q} \frac{f_o}{f_d} = \frac{T_d}{\tau}$$
(9)

A partir das equações (8) e (9), a curtose destes dois sinais estão relacionadas pela seguinte expressão:

$$Kt[env'] = \frac{4Q^2 + 3}{6Q^2} Kt[s']$$
(10)

O valor da curtose do envelope do sinal é:

- igual ao quociente do período de repetição do choque pelo tempo de relaxação, isto é $Kt(env') = T_d / \tau$;
- situado entre 0,66 Kt(s') < Kt(env') < 0,79 Kt(s'), dependendo do fator de qualidade.

5 COMPARAÇÃO ENTRE O FATOR DE CRISTA E CURTOSE

Tem sido observado que o fator de crista e a curtose são indicadores sensíveis à forma do sinal. Estes tem sido usados na detecção e evolução de defeitos gerados por choques periódicos tais como em rolamentos, dentes de engrenagens, etc. Neste caso se mostra interessante comparar estes dois indicadores e sua sensibilidade no acompanhamento da evolução destes defeitos.

5.1 Caso do sinal de resposta

A partir das Eq. (6) e (8) o fator de crista e a curtose do sinal estão relacionados por

$$Kt[s'] = Kt_1[Q]Fc^2[s']$$
⁽¹¹⁾

onde os valores de $Kt_1(Q)$ são decrescentes com o aumento do fator de qualidade, e varia entre 0,610 (Q=2) e 0,375 (Q=50), conforme expressões do apêndice A.

Esta relação leva às seguintes conclusões:

- a curtose é um indicador mais sensível às variações na velocidade de rotação que o fator de crista. Observa-se uma redução de 2 para a curtose, para $\sqrt{2}$ no fator de crista;
- a curtose é um indicador mais sensível que o fator de crista na detecção da presença de sinais impulsivos periódicos, uma vez que é proporcional ao quadrado do fator de crista;
- a curtose é um indicador mais sensível que a amplitude *rms* do sinal, pois é uma função da quarta potência deste;
- a habilidade da curtose para detectar defeitos induzidos por forças impulsivas periódicas é muito maior que o fator de crista porque requer um período de choque mínimo $2,5\tau < T_d < 3\tau$ enquanto o fator de crista requer pelo menos $T_d > 13\tau$.

É interessante comparar o quociente entre o fator de crista e a curtose de um sinal real contaminado por ruído aleatório, de modo a definir novos indicadores:

$$Kt = \frac{Kt_{real}}{3}; \quad Fc = \frac{Fc_{real}}{5}$$
(12)

6. RESULTADOS DO MODELO SIMULADO

As Figuras 3a e 3b ilustram as diferenças de sensibilidade entre o fator de crista e a curtose do sinal e de seu respectivo envelope para diferentes relações f_o/f_d (ver Tabela 1). Os valores foram obtidos usando um sinal do tipo resposta à uma excitação periódica, conforme a Figura 1, com frequência de ressonância de 663 Hz e fator de qualidade Q=6,4. Os valores foram calculados a partir das equações (7) e (11), e mostram que para valores crescentes da relação f_o/f_d ocorre maior diferença de sensibilidade em favor da curtose, conforme previsto pelo modelo.

f_o/f_d	SINAL			ENVELOPE			
	rms	Fc	Kt	rms	Fc	Kt	
5	0.3170	2.7899	3.5206	0.4474	2.0364	2.5126	
10	0.2249	3.9433	7.0779	0.3176	2.8909	4.3007	
25	0.1423	6.2286	17.8768	0.2011	4.5712	10.8014	
50	0.1006	8.8086	35.9135	0.1423	6.4438	22.2602	
100	0.0711	12.0081	72.0096	0.1006	9.1622	45.5042	
200	0.0503	16.9917	146.8535	0.0711	13.2638	93.7177	

Tabela 1. Comparação de parâmetros obtidos pelo modelo simulado.

Figura 3. Comparação de sensibilidades entre o fator de crista e a curtose.

7. RESULTADOS EXPERIMENTAIS

Para comprovar o desempenho destes indicadores na prática, foram analisados alguns sinais de vibração obtidos de um banco de ensaios com rolamentos de esferas FAG E-20, onde foram produzidas falhas do tipo riscos transversais na pista externa estacionária, com tamanhos variando de 1 a 3 mm². A aquisição dos sinais foi feita através de um analisador de Fourier, modelo TEKTRONIX 2630, com aquisição no tempo de 4096 pontos e faixa útil de análise de 0 a 20 kHz (Silva, 1999).

A Figura 4a mostra um bloco de sinal obtido de um acelerômetro B&K 4371 montado sobre o mancal de teste, para o eixo girando a 1500 rpm e frequência característica do defeito de 105 Hz. A Figura 4b representa o espectro do sinal em frequência, onde observa-se várias faixas de ressonâncias que podem ter sido excitadas pelos choques das esferas sobre a falha. As Figuras 4c e 4d apresentam os sinais de envelope no tempo obtidos após filtragem do sinal (largura de banda 2000 Hz) em torno das frequências 2500 e 7500 Hz, respectivamente. Os valores de curtose obtidos dos dois envelopes foram de 4,58 e 7,38. As figuras mostram claramente que a regularidade da forma do envelope melhorou com o aumento da frequência de ressonância, o que também comprova as discussões anteriores obtidos do modelo.

A Tabela 2 mostra o efeito da escolha das faixas de frequências no cálculo do fator de crista e curtose, onde nota-se que a curtose se mostrou mais sensível que o fator de crista. Neste caso, os indicadores são mais eficientes nas faixas de frequências mais altas (> 5 kHz).

Figura 4. Sinal no tempo (a); Espectro FFT (b); Envelopes do sinal $f_o = 2500 e 7500 Hz$ (c,d).

Tabela 2. Valores do fator de crista e curtose	e para várias faixas de frequências
--	-------------------------------------

Frequência (kHz)	Valor rms	Fator de crista	Curtose
0-20	0,548	3,517	3,675
0-5	0,547	3,479	3,674
5-10	0,003	5,691	8,743
10-15	0,005	5,637	8,877
15-20	0,002	7,034	13,398

8. CONCLUSÕES

O estudo mostra que o fator de crista da resposta do sinal induzido pela resposta da ressonância devido uma excitação periódica impulsiva é proporcional à $\sqrt{T_d/\tau}$ e que a curtose é proporcional ao Fc^2 . A habilidade do fator de crista na identificação da existência de excitação por choques periódicos requer que o período de repetição dos choques seja no mínimo 13 τ , enquanto que a curtose requer apenas 3τ . Portanto, a curtose é um indicador mais sensível que o fator de crista. Por outro lado, a curtose é extremamente sensível ao ruído, e na prática é necessário uma filtragem do sinal para manter o desempenho do indicador. Além disso, ao contrário do que alguns pesquisadores concluíram (Dyer & Stewart, 1978), (Rush, 1979), a curtose é um indicador que depende da frequência de rotação.

Quanto à sensibilidade, considerando que o sinal medido por um acelerômetro está constituído de respostas de muitas ressonâncias, a medida ou cálculo destes indicadores sobre uma larga faixa de frequências reduz sua sensibilidade devido a efeitos de mascaramentos, e capacidade de detecção de defeitos. A solução consiste em medir ou calcular estes indicadores sobre um certo número de bandas mais estreitas de frequências.

9. REFERÊNCIAS BIBLIOGRÁFICAS

- Dyer, D. and Stewart, R. M., 1978, "Detection of rolling element bearing damage by statistical vibration analysis", Transactions of ASME Journal of Mechanical Design, v. 100, n. 2, pp. 229-235.
- Pachaud, C., Salvetat, R. and Fray, C., 1997, "Crest factor and Kurtosis contributions to identify defects inducing periodical impulsive forces", Mechanical Systems and Signal Processing, v. 11, n. 6, pp. 903-916.
- Rush, A. A., 1979, "Kurtosis, a crystal ball for maintenance engineers", Iron and Steel International, pp. 23-27.
- Silva, A. A., 1999, "Detecção e Análise Dinâmica de Falhas em Rolamentos", Tese (Doutorado), Universidade de São Paulo Escola de Engenharia de São Carlos, s586d.

$Fc[Q] = \sqrt{\frac{4\pi}{Q}} = k(Q)$
$k(Q) = \sqrt{\frac{4Q^2}{4Q^2 - 1}} \sin(\alpha) e^{-\frac{\alpha}{2Q}\sqrt{\frac{4Q^2}{4Q^2 - 1}}}$
$Kt[Q] = \frac{6\pi Q}{4Q^2 + 3}$
$Kt_{1}[Q] = \frac{3}{8} \frac{4Q^{2} + 1}{4Q^{2} + 3} \sin(\alpha) e^{-\frac{\alpha}{2Q}\sqrt{\frac{4Q^{2}}{4Q^{2} - 1}}}$
$\alpha = \arctan(2Q);$

^							
	X 7.1 1.	P • • 1	e . ~			1 1 1 1 (•
	Valoros dos	CODITICIONTOS A	om tuncoa	0 00 191 01	' a a a	nonuouo i	
	v and c_{3} ups	UUUIUIUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU	tini tunta	\mathbf{u}	ucu	uanuaut v	,
							•