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ABSTRACT 
 
Composite materials are being increasingly used in industrial thermal applications in the last 
decade; the determination of macroscopic thermal properties of composites is thus of 
fundamental and practical importance. A frequent and important composite microstructure 
consists of solid short fibers of circular cylindrical shape dispersed in a solid matrix. Due to 
manufacturing processes characteristics, an important microstructural model for such 
composites is that of a periodic cell composed of a short circular cylindrical fiber placed at the 
center of a cube and along one of its horizontal axes. Finite-element approaches to study heat 
conduction in short-fiber composites, often developed due to their great geometric flexibility, 
require the generation of appropriate three-dimensional meshes. In this work, we develop and 
implement a procedure for generating (tetrahedral) finite-element meshes in the periodic cell; 
such meshes are then evaluated as to their quality. 
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1. INTRODUCTION 
 

Composite materials, or simply composites, are characterized by the presence of 
several phases and/or dissimilar constituents; often, one component is dispersed as fibers or 
particles in a continuous matrix of another component. Composites can attain a wide range of 
thermal properties, and are being continually developed for applications in the aerospace, 
automobile, and electronic packaging industries; the determination of macroscopic thermal 
properties of composites, in terms of the microstructure and component properties, is thus of 
fundamental and practical importance (Mirmira & Fletcher, 1999; Ayers & Fletcher, 1998; 
Furmanski, 1997). As pointed out by Mirmira & Fletcher (1999), flexible approaches to the 
study of heat conduction in composites, able to accomodate geometric and physical variations 
relatively easily, are needed in order to obtain more satisfactory comparison between 
numerical and experimental studies. Recent advances in computing capabilities have enabled 
increased accuracy and complexity in numerical simulations; in particular, finite-element 
approaches (Matt, 1999; Cruz, 1998), which offer great geometric flexibility, require the 
generation of appropriate two- or three-dimensional meshes. 

A frequent and important composite microstructure consists of monodisperse solid 
thermally-conducting short (chopped) fibers of circular cylindrical shape dispersed in a solid 
matrix (Mirmira & Fletcher, 1999; Furmanski, 1997). The manufacturing processes for such 
composites include the step of pressing the components together, such that the fibers tend to 



  

align perpendicularly to the applied pressure. As a consequence, the fibers may become either 
transversely aligned (lying on parallel planes but not parallel to each other in each plane) or 
longitudinally aligned (lying on parallel planes and parallel to each other). As a first and 
necessary step to treating the former, more complex, situation, here we consider only the latter 
situation: to represent the composite, we adopt the microstructural model consisting of a 
periodic cell composed of a short circular cylindrical fiber placed at the center of a cube and 
along one of its horizontal axes. The fiber-to-cube volume ratio defines the (dispersed-phase) 
volume fraction, or concentration, of the composite. The objective of this work is to develop 
and implement a semi-automatic procedure to generate unstructured three-dimensional 
(tetrahedral) finite-element meshes in such periodic-cell microstructure. In particular, we 
develop algorithms for the distribution of finite-element corner-nodes, or simply nodes, on 
lines and surfaces of the periodic cell; the distributed nodes are subsequently input to a third-
party software, which then generates the required surface and volume meshes. The generated 
meshes are then analysed as to their quality. Future work shall use these volume meshes to 
calculate the effective conductivity of short-fiber composites; such results are currently 
lacking, and needed, in the literature (Mirmira & Fletcher, 1999; Furmanski, 1997). 
 
2. UNSTRUCTURED 3-D MESH GENERATION IN THE PERIODIC CELL 

 
Finite-element mesh generation consists in the subdivision of the physical domain of 

interest in a collection of non-overlapping conforming subdomains, called the elements. Here, 
our domain is the periodic cell composed of a circular cylindrical short fiber (henceforth 
denoted simply as fiber) placed at the geometric center of a cubic matrix (the cube) and along 
its horizontal X-axis, as illustrated in Figure 1(a). In the following subsections, we describe 
our semi-automatic procedure developed to generate unstructured three-dimensional 
tetrahedral finite elements in the entire volume of the periodic cell. Our procedure consists in 
six steps: first, nodes are distributed on lines and surfaces of the periodic cell; second and 
third, surface meshes on the six faces of the cube and on the entire cylindrical surface of the 
fiber are generated; fourth and fifth, the volume meshes in the fiber and in the region between 
the cube and the fiber are constructed; finally, the union of these two volume meshes is 
effected. In order to generate the surface and volume meshes of this work, we use a third-
party advancing-front generator, NETGEN 3.2 (Schöberl, 1998; Schöberl, 1997), licensed to 
the authors for academic use. The six steps are described below. 
 
2.1 Nodes Distribution and Generation of the Surface Mesh on the Cube 
 

We first need to construct a periodic surface mesh on all six faces of the cube of side λ  
containing a fiber of diameter d and length L. The concentration, c, and the aspect ratio, ρ, are 
nondimensional parameters related to the size of the fiber, and defined as 
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Four fundamental tasks have to be executed in order to generate the desired surface mesh: 
periodic distribution of nodes on the four straight edges of each of two base-faces of the cube; 
distribution of nodes on the internal contours of the two base-faces; generation of the 
triangular finite-element mesh inside the base-faces; and, last, appropriate translation and 
rotation of the two base-faces in order to construct the other four faces of the cube. 

Base-face A, illustrated in Figure 1(b), is a square of side λ containing a circle of radius 
d/2 whose center coincides with the geometric center of the base-face. Base-face B, illustrated 
in Figure 1(c), is a square of side λ containing a rectangle of sides d and L whose geometric 



  

center coincides with the geometric center of the base-face. The regions defined by the circle 
and the rectangle are the projections of the fiber surface on the respective base-faces. The 
base-faces A and B are templates for the faces of the cube normal and parallel to the axis of 
the fiber, respectively. 

The boundary-node distribution function for the lines and internal contours of the base-
faces takes into account the physical distance between a boundary node Pj and the solid 
(fiber) surface in the cell, and is given by 
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where h is the actual mesh spacing between Pj and the next boundary node Pj+1, nr is the 
global mesh refinement parameter, dmin is the minimum distance of the node Pj to the solid 
surface in the cell, h0 is the input default mesh spacing, and m is a parameter which guarantees 
that at least m elements will exist between the node Pj and the solid surface; typically, m = 2 
and nr = 1 or nr = 2. It is observed that, at high concentrations or high aspect ratios (when 
( ) 01.02 <− 0hdλ  or ( ) 01.02 <− 0hLλ ), the distribution of nodes according to equation 

(2) leads to the appearance of excessively distorted triangles in the base-faces, mainly in the 
narrow regions between the edges of the square and the internal contours. We have thus 
slightly altered the distribution of nodes for these regions: at high values of c or ρ, we insert 
only one node exactly in the middle of each of the segments that connect the edges of the 
square to the internal contours (Figures 1(b) and 1(c)). With this modification, a definitive 
improvement in the quality of the generated triangles is observed. Periodicity of the nodes on 
the outer edges of the base-faces is guaranteed by the symmetry of our cell geometry. 

 After the step of distributing nodes on the lines and internal contours of the base-faces, 
we then pass to the mesh generator NETGEN 3.2, by means of data files, the coordinates and 
the connectivity of the distributed nodes. The generator then reads these files, and constructs 
triangular (plane-surface) meshes inside the base-faces, such as the ones illustrated in Figures 
2(a) and 2(b). The periodicity around the outer edges of the base-faces can be observed. To 
enforce cell periodicity, we need to translate and rotate the two base-faces appropriately, so as 
to construct the other four faces; therefore, opposite faces of the cube are identical. In the XYZ 
Cartesian coordinate system adopted (Figure 1(a)), base-face A is a template for the YZ faces 
of the cube, whereas base-face B is a template for the XY and XZ (through rotation) faces. In 
Figure 2(c), a periodic surface mesh on the cube is shown, obtained with the procedure 
described above and utilizing the two base-faces illustrated in Figures 2(a) and 2(b). 

 

                       (a)                                                  (b)                                                (c) 
Figure 1. (a) Geometry of the cubic cell domain and associated XYZ Cartesian coordinate 
system (a); geometries of the cube base-faces A (b) and B (c) (not to scale), and respective 
distributions of nodes on their lines and internal contours, according to equation (2).                                    
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                (a)                                                  (b)                                                    (c) 
 
Figure 2. Periodic triangular meshes within the cube base-faces A (a) and B (b), and periodic 
cube surface mesh (c) obtained after translations and rotations of the base-faces A and B;   
h0/λ = 0.05, m = 2, nr = 1, c = 0.25, ρ = 2.0. 
 
2.2 Nodes Distribution and Generation of the Surface Mesh on the Fiber 

 
We now describe the procedure developed to construct the surface mesh on the fiber. The 

procedure encompasses three fundamental tasks: selection of primitive solids to generate the 
geometry of the 3-D surface to be meshed, distribution of nodes on selected regions of this 
surface to be refined, and generation of the triangular finite-element mesh on the surface. The 
last task is effected by NETGEN 3.2, which is able to triangulate 3-D surfaces allowing for 
local mesh refinement; the user needs to create a file containing the geometric data relative to 
the regions to be locally refined. 

NETGEN 3.2 has five primitive solids available to the user: plane, sphere, infinite length 
cylinder, cone, and tube. Here, to generate the geometry of the fiber surface, we need to 
utilize the infinite length cylinder and the plane. The infinite cylinder is specified through the 
coordinates of two points on its axis and the radius, d/2. The fiber is then specified by means 
of the intersection operation of the infinite cylinder with two parallel planes normal to its axis, 
separated by a distance equal to L. 

We have implemented an algorithm for the specification of the regions of refinement on 
the surface of the fiber (lateral surface and bases) and the mesh spacing around the points 
which define these regions. The regions of refinement are the portions of the fiber surface 
closer to the other neighboring fibers; these regions are delimited by lines of nodes placed on 
the lateral surface and on the bases of the fiber, as illustrated, respectively, in Figures 3(a) and 
3(b). The nodes distribution function to define the mesh spacing h along the boundaries of  
such regions is also given by equation (2), but now with dmin representing the smallest 
distance between a node on the fiber surface and the six faces of the cube (note that, due to 
the longitudinal alignment of the fibers in this work, this distance is proportional to the 
smallest distance of the node to the surfaces of neighboring fibers). A single data file is then 
written containing the information on the primitive solids, the (X,Y,Z) coordinates of the 
nodes distributed on the lines of the regions of refinement, and the mesh spacing h around 
these nodes. 

To accomplish the last task, NETGEN 3.2 reads the data file and subsequently generates 
a non-uniform triangular finite-element mesh on the surface of the fiber, as illustrated in 
Figure 4(a). During execution, NETGEN 3.2 prompts the user for the value of the default 
spacing of the surface mesh; the parameter h0 is thus entered. 
                                                                                                                                                                    
 
 



  

(a) (b) 
 

Figure 3. Distribution of nodes along the lines of the regions of refinement on the lateral 
surface (a) and bases (b) of the fiber. 

                                (a)                                                                            (b)  
                                                                                                                                  

Figure 4. Surface mesh on the fiber (a) and YZ cross section of corresponding volume mesh 
in the fiber (b); h0/λ = 0.05, m = 2, nr = 1, c = 0.25, ρ = 2.0. 
 
2.3 Generation of the Volume Mesh in the Fiber 
 

After the generation of the surface mesh on the fiber, as described in the previous section, 
the geometric information (nodes coordinates) and the topological information (connectivity 
of triangles) relative to this surface mesh are stored in a data file. Subsequently, this file is 
read by NETGEN 3.2, which then constructs a tetrahedral volume mesh inside the fiber. 
Figure 4(b) illustrates a YZ cross section of the volume mesh inside the fiber, obtained from 
the surface mesh shown in Figure 4(a). 

 
2.4 Generation of the Volume Mesh in the Region between the Fiber and the Cube 
 

Following the generation of the periodic surface mesh on the cube and the surface mesh 
on the fiber, we group all the information relative to these two meshes in a single data file. It 
is important to remark that, in this step, we have to invert, by node renumbering, the 
orientation of the triangles of the surface mesh on the fiber, relative to the orientation used 
generate the volume mesh in the fiber. The data file is then processed by NETGEN 3.2 in 
order to construct the tetrahedral volume mesh in the region between the fiber and the cube, 
i.e., in the matrix. Figure 5(a) illustrates the surface meshes on the cube and on the fiber 
surface, used by NETGEN 3.2 to generate the volume mesh in the region between the fiber 
and the cube shown in Figure 5(b). 
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2.5 Union of the Two Volume Meshes 
 

 The objective of this last step is to condense the geometric and topological information 
relative to the two previously generated volume meshes into one single consistent volume 
mesh inside the whole periodic cell. To accomplish this, we first need to make the two 
volume meshes compatible at their shared boundary: we thus identify and renumber all the 
nodes on the fiber surface appropriately, in order to guarantee the same connectivity of nodes 
of the triangles shared by tetrahedra in the region between the fiber and the cube, and in the 
fiber. The renumbering is based on the topological, rather than on the geometric, information 
of the two volume meshes. Finally, the nodes of the volume mesh inside the fiber are 
renumbered accordingly. A conforming volume mesh inside the periodic cell, obtained from 
the meshes in Figures 4(b) and 5(b), is shown in Figure 5(c). We note the desired selective 
refinement of the mesh in the regions where the fiber is closer to the neighboring fibers. 

                      (a)                                                   (b)                                                (c)   
                                                                                                                     
Figure 5. Surface mesh on the cube and on the fiber (a), volume mesh in the region between 
the fiber and the cube (b), and XZ cross section of corresponding volume mesh in the periodic 
cell (c); h0/λ = 0.05, m = 2, nr = 1, c = 0.25, ρ = 2.0. 
 
3. RESULTS AND CONCLUSIONS 
 

In this section we present and analyse some representative mesh results, and draw some 
concluding remarks. In Figure 6, we show the surface meshes on fibers of four different 
periodic cells with varying c, },35.0,15.0,10.0{∈c  and ρ, }0.2,5.0{∈ρ . We can clearly 

see that, as the concentration c increases for fixed aspect ratio ρ, the meshes display the 
desired selective refinement in the regions where the fiber is closer to the neighboring fibers. 
The CPU time, in seconds, required to execute the major steps of the procedure for volume 
mesh generation inside the periodic cells containing the fibers illustrated in Figure 6, is shown 
in Table 1; the processor is a Pentium II 400 chip with 256 Mb RAM available. We observe 
that, first, the volume meshes are considerably more time consuming than the surface meshes. 
Also, as the concentration increases for fixed ρ, the CPU time increases considerably. 

The results of standard tests (de l’Isle & George, 1995) conducted to evaluate the quality 
of the tetrahedra generated by NETGEN 3.2 for the four cell volume meshes of Table 1, are 
shown in Table 2. An extremely distorted tetrahedron is rated sliver, and a regular or 
equilateral tetrahedron is rated excellent. In Table 2, for the four generated cell volume 
meshes, the number of elements, the number of global nodes, and the percentages of elements 
rated sliver, bad, good and excellent are shown. 

 



  

Table 1. CPU time, in seconds, required to execute the major steps of the procedure for 
volume mesh generation inside the periodic cells containing the fibers illustrated in Figure 6; 
the processor is a Pentium II 400 chip with 256 Mb RAM available. 
 

CPU time, in seconds 
 Base-face A Base-face B Fiber surface Fiber volume Matrix volume 

6(a) 11 11 12 36 480 
6(b) 28 16 48 145 1309 
6(c) 9 15 40 66 648 
6(d) 9 23 172 505 1452 

 
 
Table 2. Number of elements, number of global nodes, and percentages of elements rated 
sliver, bad, good and excellent for the four volume meshes generated by NETGEN 3.2 inside 
the periodic cells containing the fibers illustrated in Figure 6. 
 

Evaluation tests of the quality of the tetrahedra generated by NETGEN 3.2 
 Number of 

elements 
Number of 

global nodes 
Sliver Bad Good Excellent 

6(a) 111754 22467 0.2 % 12.0 % 46.0 % 41.8 % 
6(b) 177611 33211 1.4 % 11.0 % 43.0 % 44.6 % 
6(c)  96328 18508 0.5 %  9.6 % 50.2 % 39.7 % 
6(d) 172452 32906 2.1 % 13.0 % 64.1 % 20.8 % 
 
 

We observe in Table 2 that the presence of excessively distorted tetrahedra is small; 
nevertheless, they should be eliminated from the mesh. Tetrahedra rated bad can be kept in 
the mesh (Matt, 1999). It is possible that the presence of tetrahedra rated sliver, is related to 
the algorithmic conception of NETGEN 3.2:  it is well known in the literature (Baker, 1989) 
that the advancing front algorithms for mesh generation, in spite of representing very well the 
boundaries of the domain, not always generate elements of acceptable quality inside the 
domains. Also, it is a fact in unstructured mesh generation that Delaunay triangulation, 
employed in NETGEN 3.2, offers the best possible triangulation for a given set of nodes in 
two dimensions; however, this does not apply in three dimensions. Two possible solutions to 
this problem can be proposed. First, another 3-D mesh generator can be tested in our 
procedure, preferrably one that utilizes a Voronoi algorithm (Baker, 1989). The second 
solution, slightly more complex than the first, is to devise and implement an algorithm to 
identify and fix the distorted tetrahedra, by changing node coordinates; as a consequence, the 
mesh generated by NETGEN 3.2 would be geometrically, but not topologically, modified. 

The procedure developed in this work, to generate meshes for longitudinally-aligned 
short-fiber composites, can be used in finite-element approaches to solve the heat conduction 
problem in such materials, in order to determine their effective thermal conductivity. The 
procedure is also a basis for, and can be extended to, a more sophisticated and realistic 
microstructural model, that of transversely-aligned short fibers (Mirmira & Fletcher, 1999). 
 
 
 
 
 
 



  

                                        (a)                                                     (b) 

                                        (c)                                                    (d) 
 
Figure 6. Fibers, and corresponding surface meshes (h0/λ = 0.05, m = 2, nr = 1), of four 
different periodic cells (not to scale): (a) c = 0.10, ρ = 0.5; (b) c = 0.15, ρ = 0.5; (c) c = 0.15,  
ρ = 2.0; (d) c = 0.35, ρ = 2.0. 
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