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Abstract 

 
Convective heat transfer in a curved rectangular duct is numerically studied using a 

toroidal coordinate system. The laminar flow is considered fully developed and a constant 
axial temperature gradient is assumed with a peripherally uniform wall temperature condition. 
The mass conservation, momentum and energy equations are solved by the finite element 
method. Results showed that the curved tubes have a higher heat transfer rates than equivalent 
straight ducts due to centrifugal effects. These forces induce secondary flows constituted by 
two vortices perpendicular to the axial flow direction increasing the momentum and the 
energy transfer rates. Comparisons made with previously published data for Nusselt number 
at lower Dean numbers showed good agreement and these results are extended for larger 
Dean number at this work. The influence of the duct aspect ratio on the Nusselt number and 
on the friction factor is also analyzed.  
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1. INTRODUCTION 

 
Curved ducts are extensively used in chemical reactors, storage tanks, agitated vessels 

and others heat exchangers. Helical and spirals coils are example of curved tubes. According 
to Shah and Joshi (1987) curved ducts have a higher heat transfer rates than equivalent 
straight ducts. It occurs due to secondary flows that increase the momentum and energy 
exchanges. A large number of works into curved ducts with negligible torsion effects have 
been completed using a toroidal coordinate system.  

The first analytical investigation on flow in a coil tube was performed by Dean (1927) 
showing that the centrifugal forces induce a secondary flow. These recirculations are 
represented by two vortices perpendicular to the main axial flow.  

Cheng and Akiyama (1970) studied numerically the fully developed laminar forced 
convection problem in curved rectangular channel. These authors used a finite difference 
method to solve the governing equations by a stream-function formulation.  

The effect of curvature for the Graetz problem in a square duct was investigated by 
Cheng et al. (1975) for the two basic thermal boundary conditions: constant wall temperature 
and uniform wall heat flux.  

Ghia and Sokhey (1977) analyzed the laminar flow in curved ducts using the three-
dimensional parabolized Navier-Stokes equations. For square ducts they found that the 
Dean’s instability phenomena first appeared at Dean number near to 143.  

Thomson et al. (1998) investigated the torsion effects in curved ducts of rectangular cross 
section. They showed that the torsion increases the friction factors and reduces the Nusselt 



number when compared with the pure toroidal case. So, they recommended that torsion 
influence must be minimized to enhance the heat transfer.  

At the present work the laminar forced convection in rectangular curved ducts is studied 
with a constant axial temperature gradient and a peripherally uniform wall temperature 
condition is assumed. The mass conservation, momentum and energy equations are solved by 
the finite element method. The influence of the duct aspect ratio on the heat transfer rate and 
on the friction factor is also analyzed. Results for the Nusselt number were compared with 
previously published data at lower Dean numbers and showed good agreement. Besides, the 
Nusselt number and friction factor results are extended for larger Dean number.  

 
2. MATHEMATICAL FORMULATION 

 
Steady-state, laminar and incompressible flow is considered with hydrodynamically and 

thermally fully developed conditions. The fluid properties are approximately constant, so the 
energy equation may be decoupled from continuity and momentum equations. 

 

 
 

Figure 1. Rectangular curved duct in a toroidal coordinate system 
 
The fully developed flow and the constant axial temperature gradient assumptions result 

in the following conditions for the velocity and temperature profiles: 
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where: 
z is the horizontal axial coordinate (main flow); 
w is the velocity component in the z direction; 
u and v are the velocity components in the transversal section (secondary flow); 
Tw is the wall temperature and Tb is the bulk mean temperature. 

 
The total pressure field P’(x, y, z) is decoupled in an axial contribution and in a parcel 

corresponding to the transversal direction, as mentioned in Fletcher (1991): 
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The governing equations (continuity, energy,  x, y and z momentum equations) in the 

toroidal coordinate system showed in Fig.1 are represented by: 
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where: 
z = horizontal axial coordinate (main flow); 
w = velocity component in the z direction; 
u, v =  the velocity components in the transversal section (secondary flow). 
R = radius of curvature of the duct; 
ρ = fluid density; 
ν  = fluid kinematic viscosity; 
Cp = fluid constant pressure specific heat;  
k = fluid thermal conductivity. 

Starting from the fluid properties the Prandtl number (Pr) can be defined as: 
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The boundary conditions for the problem are: 

u = v = w = 0   and  T = Tw   at
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After numerically determining the axial velocity (w) and the temperature field (T), the 

average velocity (wm) and the Reynolds number (Re) were calculated: 
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where A is the duct cross-section area and Dh is the hydraulic diameter given by:  
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The Dean number (De) and the duct curvature ratio (RC) are calculated as follows: 
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The Nu (Nusselt number) and fRe (friction coefficient and Reynolds number product) are 

expressed by: 
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where the convection coefficient h is defined as:  
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3. NUMERICAL SOLUTION 

 
The laminar forced convection problem was solved numerically using the Galerkin finite 

element method. An unstructured mesh with triangular elements of six nodes and second-
degree interpolation polynomials was applied to the partial differential equations system 
represented by the equations (3) to (7). The resultant algebraic equations system was solved 
by an iterative procedure in a coupled (no-segregated) way combining the Conjugated 
Gradient and Newton-Raphson methods. An adaptive scheme was used with successive mesh 
refinement in the more intense gradient regions. Fig. 2 presents the computational domain and 
an intermediary mesh in the solution process for a curved rectangular duct with aspect ratio 
b/a = 2/3. 

 

 

b

 
a   
 

Figure 2. Intermediary mesh in the solution process for a curved rectangular duct 
 
 
4. RESULTS 
 

At this work the numerical simulations were carried out with Pr = 1 (Eq. 8) and for a 
constant duct curvature ratio R/Dh = 10 (Eq. 12). The numerical results were validated by 
comparing the Nusselt number and friction factor data (Eq. 13) with the correlation proposed 



by Shah and Joshi (1987). This comparison for the curved duct is showed in Fig. 3 and 
presented a good agreement in the range 80 < De < 140. 

 It is verified that the present work provides better results in comparison with the Shah 
and Joshi (1987) data when the curvature effects are negligible (De < 80). For De > 140 the 
difference between the numerical results and the correlation data ever increases. However, as 
cited in Shah and Joshi (1987), the correlation has a good agreement with the experimental 
data only for Pr = 0.7.  

The solid horizontal line in Fig. 3 indicates the straight square duct values presented by 
Shah and Bhatti (1987). The curved duct (dashed-line) increases the heat transfer and the 
friction factor in comparison with the straight duct case. 
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Figure 3. Nu and fRe results for the curved square duct as a function of the Dean number. 

 
The main axial velocity, the secondary flow vectors plot and the temperature contours 

obtained for the duct transversal section are shown in Fig. 4 and Fig. 5. The Dean number 
effect on these distribution patterns for a curved channel with b/a = 3/2 is also presented.  

It is noted that all contours present symmetric characteristics about the horizontal mid-
plane. When De number is low (Fig. 4a) the secondary flow is weak. At this case the axial 
velocity (Fig. 4b) and the temperature distribution also show a symmetric feature about the 
vertical mid-plane, as the straight duct profiles. As the De number increases the secondary 
flow intensifies and the two-cell cores migrate towards the channel superior and inferior 
extremes (Fig. 5a).  

When De = 130, the axial velocity contour becomes more elongated in the vertical 
direction of the duct cross-section (Fig. 5b) and the curvature effects concentrate the velocity 
gradients in the right portion of the channel. In Fig. 4c the temperature contours presents only 
one minimum but in Fig. 5c the distribution shows two minimums (due to a more intense 
secondary flow) that migrate to the duct extremes as the De number increases. The 
temperature gradient near the external duct wall is intensified due to the secondary flow 
recirculation cores. 

The influence of the duct aspect ratio b/a on the curved duct flow is presented in Fig. 6 
for De = 40. Only the half duct cross-section of the secondary flow vectors plot and the main 
axial velocity contour are shown.   
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Figure 4. (a) Secondary flow; (b) axial velocity and (c) temperature contours for De = 5 
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Figure 5. (a) Secondary flow; (b) axial velocity and (c) temperature contours for De = 130 
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Figure 6. Secondary flow and axial velocity for (a) b/a = 2/3; (b) b/a =1 and (c) b/a = 3/2  

 



For b/a = 2/3 (Fig. 6a)  the secondary flow mixing is more intense over the entire duct 
cross-section but when b/a = 3/2 the recirculation cores are displaced to the channel vertical 
extremes. 

The axial velocity profiles at the vertical mid-plane of the duct cross-section for three b/a 
aspect ratios is presented in Fig. 7. It is verified that the inferior and superior boundaries 
layers are thicker when b/a = 2/3. This results that the axial velocity profile at the horizontal 
mid-plane exhibits also higher values for this b/a duct aspect ratio (Fig. 8). Besides the axial 
velocity distribution maximum values migrates toward the external duct wall when the b/a 
ratio decreases. On the other hand, when the b/a ratio is high the secondary flow is more 
concentrated near the superior and inferior channel extremes (Fig. 6c) with little effect in the 
central region flow pattern. When b/a increases the axial velocity profile tends to a symmetric 
profile alike the straight parallel plates duct (Fig. 8).  
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Figure 7. Axial velocity profile at the duct 
cross-section vertical mid-plane  

 
Figure 8. Axial velocity profile at the duct 

cross-section horizontal mid-plane  
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Figure 9.  Nu results for the curved rectangular duct as a function of the Dean number for 

different aspect ratios. (a) absolute value; (b) relative increase 
 



The curved duct Nusselt number results as a function of Dean number for different aspect 
ratios are presented in Fig. 9a showing that heat transfer rate increases due to the secondary 
flow. It is verified that when the curvature influence are negligible (low De number) the Nu 
results approximates the straight duct value. For small b/a ratios the secondary flow mixing 
effects is more accentuated resulting in higher Nusselt number values. The results shown in 
Fig. 9a represent an extension of the Thomson et al. (1998) work that provided results in 
5 < De  < 35 range.  

Fig. 9b presents the curved Nusselt number increases in comparison with the equivalent 
straight duct, showing that for higher aspect ratios as b/a = 5 and b/a = 1/5 the curved duct 
exhibits a little heat transfer increase in comparison with the straight case. Besides, the square 
channel (b/a = 1, dashed-line in Fig 9b) provides the best relative heat transfer enhance.  

 
5. CONCLUSIONS 

 
At this work the fully developed convective heat transfer problem in curved rectangular 

duct was studied. For all duct aspect ratio analyzed, the Nusselt number results approximate 
the straight duct value when the Dean number is low. The smaller b/a duct aspect ratio 
provided higher absolute Nu value while the curved square channel presented the better 
relative enhancement. 
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