INFLUÊNCIA DO NÚMERO DE FOURIER NA SOLUÇÃO DE PROBLEMAS INVERSOS DE CONDUÇÃO DE CALOR ATRAVÉS DO MÉTODO DO GRADIENTE CONJUGADO

Frederico Romagnoli Silveira Lima Gilmar Guimarães

Universidade Federal de Uberlândia, Campus Santa Mônica, Faculdade de Eng^a Mecânica, 38400-902, Uberlândia, MG, Brasil. - <u>romagnol@mecanica.ufu.br</u>; <u>gguima@mecanica.ufu.br</u>

Resumo

Os problemas inversos de condução de calor caracterizam-se pela obtenção da solução para um problema térmico sem a necessidade de se conhecer a forma funcional do parâmetro a ser estimado. O parâmetro desconhecido pode ser uma condição de contorno, condição inicial ou ainda a geração de calor (termo fonte). Neste trabalho, a técnica inversa baseada em gradientes conjugados é empregada para a obtenção de um fluxo de calor superficial. Observa-se que a eficiência na aplicação desta metodologia só é obtida a partir de certas condições de projeto. Nesse sentido, apresenta-se um estudo unidimensional dos parâmetros físicos envolvidos no problema. Nesta análise verifica-se a influência do Número de Fourier, que relaciona o tipo de material, dimensão da amostra e o tempo final de medição, sobre os resultados simulados usando o método do gradiente conjugado. Resultados experimentais também são apresentados.

Palavras-chave: Problemas inversos, Condução de calor, Estimação de parâmetros.

1. INTRODUÇÃO

Nas ciências térmicas existem inúmeros problemas de condução de calor cujas soluções não são conhecidas diretamente devido à dificuldade no estabelecimento das condições de contorno, condição inicial ou ainda do termo fonte. Uma alternativa para se obter a solução destes tipos de problemas é o uso de metodologias inversas. Nesse sentido, diferentes concepções de técnicas inversas têm sido propostas na literatura. Dentre elas podemos citar o Método de "Mollification" (Murio, 1989), o Método de Programação Dinâmica (Busby & Trujillo, 1985), o Método de Monte Carlo (Haji-Sheikh & Buckingham, 1993), o "Método da Marcha Espacial" (Raynaud & Sassi., 1994), o Método de Função Especificada Seqüencial (Beck et al., 1985) e o Método do Gradiente Conjugado (Alifanov, 1974). Neste trabalho optou-se pelo uso do método do gradiente conjugado. A técnica escolhida é uma poderosa ferramenta para a minimização de uma função objetivo, pois permite estimar qualquer parâmetro desconhecido no problema térmico, tal como a condição inicial, condição de contorno ou ainda o termo fonte (Jarny et al., 1991). Entretanto, devido a concepção iterativa e de domínio global do método, o seu emprego possui algumas limitações (Alifanov & Egorov, 1995).

Neste trabalho, o problema inverso estudado é o da obtenção da distribuição de fluxo de calor e o campo de temperatura numa ferramenta de corte durante o processo de usinagem por torneamento. Observa-se que a estimação da temperatura na região de corte é de grande importância para o estudo do desgaste da ferramenta pois ela interfere na sua vida útil.

O principal objetivo, entretanto, é apresentar uma análise numérica da influência dos parâmetros físicos nos resultados estimados. Os parâmetros analisados levam em conta o tipo de material, a espessura e ainda o tempo final de aquecimento. Uma relação entre estes parâmetros pode ser dada pelo número de Fourier. Assim, a atenção é voltada para se estabelecer condições ideais de projeto, para obtenção resultados estimados confiáveis. A ferramenta de corte é, então, simulada como uma placa plana submetida a um fluxo de calor na superfície frontal e isolada na superfície oposta. Embora o problema real da ferramenta seja bem mais complexo, com características tridimensionais e com geração de calor localizada, o modelo simplificado é eficiente e adequado uma vez, que neste trabalho, apenas o desempenho da técnica através da identificação de valores ótimos de F_0 é estudado.

2. PROBLEMA DIRETO

A Figura 1 apresenta o problema térmico estudado.

Figura 1. Problema térmico unidimensional.

A espessura da placa é definida por L e as propriedades da placa como condutividade térmica, k, e difusividade térmica , α , bem como a condição inicial, T_0 , são consideradas conhecidas. Assim o problema apresentado pode ser descrito respectivamente pela equação da difusão de calor, pelas condições de contorno e pela condição inicial como sendo

$$\frac{\partial^2 T(x,t)}{\partial x^2} = \frac{1}{\alpha} \frac{\partial T(x,t)}{\partial t}$$
(1)

$$-k\frac{\partial T(0,t)}{\partial x} = q(t)$$
⁽²⁾

$$\frac{\partial T(L,t)}{\partial x} = 0 \tag{3}$$

$$T(x,0) = T_0 \tag{4}$$

A solução direta desse problema é bem conhecida e pode ser encontrada analiticamente (Guimarães, 1993). Nesse trabalho, a solução do problema térmico é obtida numericamente através da técnica de volumes finitos (Patankar, 1980).

3. PROBLEMA INVERSO

Para o problema inverso o fluxo de calor é considerado desconhecido e será estimado a partir do campo de temperatura experimental, Y(t), obtido na face oposta (x = L). Neste, trabalho este campo de temperatura é simulada através da solução do problema direto considerando-se um fluxo de calor, q, conhecido. Apresenta-se a seguir um resumo das principais equações que descrevem o problema inverso.

A solução do problema inverso é obtida através da minimização do funcional abaixo

$$J(q) = \int_{t=0}^{t=t_f} \left[T(L,t;q) - Y(L,t) \right]^2 dt$$
(5)

3.1 Método gradiente de minimização

O algoritmo iterativo do método do gradiente conjugado para estimar um fluxo de calor desconhecido q(t) é dado por Özisik (1993) tal que,

$$q^{n+1}(t) = q^{n}(t) - \beta^{n} P^{n}(t)$$
(6)

onde n é o índice que indica o número de iterações; P^{n} é a direção descendente de busca dada por

$$P^{n}(t) = J'^{n} + \gamma^{n} P^{n-1}(t)$$
⁽⁷⁾

sendo γ^n o coeficiente conjugado e β^n o tamanho do passo definidos respectivamente por

$$\beta^{n} = \frac{\int_{t=0}^{t=t_{f}} \left[T(L,t;q) - Y(L,t) \right] \Delta T(L,t) dt}{\int_{t=0}^{t=t_{f}} \left[\Delta T(L,t) \right]^{2} dt}$$
(8)

$$\gamma^{n} = \frac{\int_{t=0}^{t=0} \left[J^{\prime n}(t)\right]^{2} dt}{\int_{t=0}^{t=t_{f}} \left[J^{\prime n-1}(t)\right]^{2} dt}$$
(9)

3.2 Problema adjunto e equação gradiente

A minimização do funcional J(t) que resulta num problema auxiliar baseado no problema direto é dado por

$$\frac{\partial^2 \lambda(x,t)}{\partial x^2} = -\frac{1}{\alpha} \frac{\partial \lambda(x,t)}{\partial t}$$
(10)

$$\frac{\partial\lambda(0,t)}{\partial x} = 0 \tag{11}$$

$$\frac{\partial \lambda(L,t)}{\partial x} = 2[T(L,t;q) - Y(L,t)]$$
(12)

$$\lambda(x,t_f) = 0 \tag{13}$$

A equação gradiente deriva do problema adjunto e é definida por (Alifanov, 1974) como

$$J'(t) = \lambda(0, t) \tag{14}$$

3.3 Critério de parada

A iterativo é interrompida quando o funcional Eq.(5) torna-se muito pequeno tal que,

$$J[q^{n+1}(t)] < \varepsilon \tag{15}$$

onde ε pode ser especificado como um número relativo pequeno ou através do princípio da discrepância (Alifanov, 1974). Assim, ε pode ser calculado em função do desvio padrão das medições de temperatura (σ) ou seja

$$\varepsilon = \sigma^2 t_f \tag{16}$$

onde t_f é o tempo final de medição.

4. INFLUÊNCIA DO NÚMERO DE FOURIER

O Número de Fourier compara a dimensão espacial, *L*, da amostra com a profundidade de penetração dos efeitos térmicos do calor imposto, q(t), para um determinado tempo de aquecimento, t_f , e para uma determinada capacidade de difusão do calor, α , ou seja,

$$F_0 = \frac{\alpha t_f}{L^2} \tag{17}$$

e indica fisicamente se a amostra atingiu o tempo de difusão do calor necessário para que o sinal de temperatura medido na face oposta contenha informação suficiente sobre o fluxo de calor imposto na face frontal. Para a identificação das condições de projeto ideais para a aplicação do método do gradiente conjugado apresenta-se a seguir uma metodologia que permite a comparação dos resultados estimados para diversas condições de trabalho.

A concepção do método do gradiente conjugado é de domínio global no tempo. Isto implica que o processo iterativo ocorre levando-se em conta todas as medições realizadas desde o instante inicial até o instante de tempo final. Além disso, devido a utilização de um problema de valor final (problema adjunto) que auxilia a minimização da função objetivo, observa-se que o parâmetro estimado terá sempre valor nulo no instante de tempo final (Eq. 13). Essas particularidades dificultam a comparação de resultados para diferentes combinações dos parâmetros L, $t_f \, e \, \alpha$. Nesse sentido, alguns critérios comparativos são estabelecidos:

- O fluxo de calor imposto à placa tem seu valor conhecido, constante e igual para todos os testes simulados;

- O fluxo de calor estimado é comparado ao imposto somente a 70% do tempo final de medição em cada teste para atenuar o efeito do problema de valor final nos resultados.

- Os materiais usados na análise do número de Fourier são: metal duro (carbeto cementado) e cerâmica (materiais usados na fabricação das ferramentas de corte). Além disso, são usados mais três materiais condutores que visam simular problemas térmicos com diferentes características termofísicas: cobre puro, aço inoxidável AISI 304 e pyroceram MgO-Al₂O₃-SiO₂, cuja propriedades térmicas são encontradas em Incropera e DeWitt, 1990;

- A incerteza entre a distribuição de fluxo de calor imposta e a distribuição de fluxo de calor estimada é dada por

$$\xi = \frac{\sum_{i=1}^{nmed} [q_{exato} - q(i)_{estimado}]^2}{q_{exato}} \times 100$$
(18)

onde nmed é igual a 70% do tempo final de medição t_f.

5. APARATO EXPERIMENTAL

A comprovação experimental da influência do número de Fourier nos resultados estimados é proposta através de testes unidimensionais. O aparato experimental é apresentado na Figura 2. Neste caso, uma amostra de aço inoxidável AISI 304 é submetida a uma fonte de calor de valor conhecido usando-se um duplo sensor resistência/transdutor de fluxo de calor. A aplicação de uma fonte de fluxo de calor sobre toda a superfície da amostra nos permite obter um problema térmico unidimensional. As dimensões da amostra e do duplo sensor são respectivamente $0,05 \times 0,05 \times 0,01$ m e $0,05 \times 0,05 \times 0,001$ m. O duplo sensor é responsável pela geração e medição do fluxo de calor imposto. O transdutor de fluxo de calor é baseado em termopilhas depositadas eletroliticamente com um tempo de resposta inferior a 10 ms. A temperatura experimental, Y(t), é obtida em x = L através de um termopar de cobre/constantan fixado à face inferior da amostra isolada termicamente. As propriedades termofísicas da amostra são consideradas constantes.

Figura 2. Aparato experimental.

6. RESULTADOS

Nesta seção resultados numéricos e experimentais são apresentados. Na primeira parte é apresentada a análise numérica que busca o estabelecimento das condições ideais para a uso do método do gradiente conjugado. Neste etapa é verificada principalmente a influência do número de Fourier na qualidade dos resultados estimados quando comparados aos valores exatos. Em seguida são apresentados dois casos testes experimentais para a comprovação da análise numérica. A temperatura experimental simulada foi obtida resolvendo-se o problema direto (Eqs.1-4). Um fluxo de calor constante ($q = 5,0 \times 10^4$ W / m) é imposto à amostra para todos os casos testes simulados. O intervalo de tempo entre medições variou de acordo com o teste e é indicado na figura correspondente. A temperatura inicial é também considerada conhecida e igual a 30,0°C. As propriedades termofísicas são consideradas constantes e estão listadas na Tabela 1.

Tabela 1. Propriedades termofísicas.

Material	Difusiv. térmica (m ² /s)	Condutiv. térmica (W/mK)
Cerâmica (Si ₃ N ₄)*	$7,2 \times 10^{-6}$	25,0
Metal duro (WC +CO)*	$2,7 \times 10^{-5}$	100,0
Cobre Puro**	$1,2 \times 10^{-4}$	400,0
Aço Inoxidável AISI 304**	$4,0 \times 10^{-6}$	15,1
Pyroceram (MgO-Al ₂ O ₃ -SiO ₂)**	$1,9 \times 10^{-6}$	3,9

* (Melo, 1998) ** (Incropera & DeWitt, 1990)

Na Figura 3 apresenta-se o comportamento da incerteza, ξ , em função do número de Fourier, F_0 para cinco diferentes materiais, ou seja, é verificado a influência do tipo material através da difusividade térmica, α . Neste teste, a espessura L foi mantida constante e igual a 0,0049m e o tempo final de medição t_f sofreu a mesma variação para todos os cinco materiais. Logo, observando a Figura 3 verifica-se que os cinco materiais apresentam uma mesma curva característica, isto é, quanto menor o F_0 maior a incerteza entre os valores estimados e os valores exatos. Além disso, a mesma ordem de grandeza da incerteza também pode ser verificada. Pode-se observar ainda que para F_0 maior que 3,0 a incerteza tende a 10% enquanto que para F_0 menor que 3,0 estes valores alcançam até cerca de 90% como no caso da cerâmica. Apresenta-se nas Figuras 4-5 os resultados para relação entre ξ e F_0 verificando-se a influência do tempo final de medição, t_f. Nesse sentido, os demais parâmetros considerados no cálculo do número de Fourier foram mantidos constantes, isto é, L = 0,0049m e $\alpha = 7,2 \times$ 10^{-6} para a cerâmica e $\alpha = 2.7 \times 10^{-5}$ para o metal duro. Na Figura 4 são apresentados os resultados usando-se um intervalo de tempo entre medições igual a 0,05s. Nesta figura observa-se em detalhe a evolução da incerteza para baixos números de Fourier. Verifica-se que a incerteza tende a diminuir a medida que o número de Fourier aumenta.

Na Figura 5 o intervalo entre medições (Δt) foi elevado de 0,1s (Figura 3) para 0,25s. Este procedimento permite estudar o comportamento da incerteza para elevados números de Fourier. Verifica-se que a incerteza é menor que 10% para F_0 superiores a 15. Logo, pode-se concluir que quanto maior o número de Fourier menor será a incerteza entre o valor estimado e o valor exato. Apresenta-se na Figura 6 a análise da influência da dimensão espacial na evolução da incerteza, ξ . Neste teste, o intervalo entre medições também foi mantido constante e igual a 0,1s e o tempo final de medição foi fixado em 3,0s e 10s para o metal duro e a cerâmica, respectivamente. Este procedimento permite que a grandeza do número de Fourier seja similar para ambos materiais. A variação da dimensão espacial é de 0,001m a 0,01m com intervalos de 0,005m até 0,055m e de 0,001 até 0,01m. Novamente, verifica-se o mesmo comportamento anterior, ou seja, para baixos número de Fourier ($F_0 < 3,0$) a incerteza é elevada ($\xi > 60,0\%$) enquanto para $F_0 > 3,0$ a incerteza se mantém em torno de 10,0%.

Nas Figuras 7 e 8 são apresentados os resultados para os testes experimentais para uma amostra de aço inoxidável. Na Figura 7, a amostra foi submetida a uma evolução de fluxo de calor com tempo de final de aquecimento de 35s para possibilitar que o problema térmico apresentasse um baixo número de Fourier ($F_0 = 1,4$). Observa-se que os resultados estimados pelo método do gradiente conjugado não apresentam uma boa concordância quando comparados aos valores experimentais, como era esperado de acordo com a análise numérica mostrada ao longo deste trabalho. O erro médio relativo entre o fluxo de calor experimental e o fluxo de calor estimado na região de aquecimento (compreendida de 12s a 35s) é de 35,18%. Portanto, um número de Fourier desta magnitude implica num baixo nível de informação do campo de temperatura experimental, isto é, o tempo de difusão de calor foi pequeno para que a temperatura na face oposta contivesse informação suficiente sobre o fluxo de calor aplicado na face superior da amostra. Logo, conforme a análise numérica apresentada neste trabalho, a incerteza entre o fluxo de calor estimado e o fluxo de calor experimental tende a diminuir para sistemas com número de Fourier de ordem superior. Nesse sentido, apresenta-se na Figura 8 um teste experimental com número de Fourier igual a 3,4. Neste teste, o intervalo de medição e espessura da amostra foram mantidos constantes, sendo o tempo o único parâmetro. Observa-se uma boa concordância entre os valores estimados e exatos, onde neste caso o erro médio relativo calculado na região de aquecimento (12s a 85s) é igual a 9,72%.

Figura 3. Influência da difusividade térmica na evolução da incerteza, ξ , $\Delta t = 0,1$ s.

Figura 5. Influência do tempo final de medição na evolução da incerteza, ξ , $\Delta t = 0.25$ s.

Figura 7. Teste experimental, $F_0 = 1,4$. $\Delta t = 1,12$ s, $t_f = 35$ s, L = 0,01m.

Figura 4. Influência do tempo final de medição na evolução da incerteza, ξ , $\Delta t = 0.05$ s.

Figura 6. Influência da dimensão espacial (*L*) na evolução da incerteza, ξ , $\Delta t = 1.0$ s.

Figura 8. Teste experimental, $F_0 = 3,4$. $\Delta t = 1,12s, t_f = 85s, L = 0,01m$

7. CONCLUSÃO

Após os testes numéricos realizados, conclui-se que uma análise prévia do número de Fourier, F_0 , é necessária para que a aplicação do método do gradiente conjugado na solução de problemas inversos de condução de calor seja eficaz. Verifica-se que para $F_0 > 3,0$ a incerteza entre os valores estimados e exatos tende a se manter em torno de 10,0%. Este comportamento se repete para diferentes combinações dos parâmetros *L*, $t_f e \alpha$. A análise da curvas de incerteza em função do número de Fourier indicam que para $F_0 > 3,0$ as amostras atingem tempo de difusão do calor necessário para que o sinal de temperatura medido ou simulado na face oposta contenha informação suficiente sobre o fluxo de calor no qual a amostra foi submetida. Os resultados experimentais comprovam a análise numérica, isto é, para um baixo número de Fourier a concordância entre o fluxo de calor experimental e o fluxo de calor estimado é baixa (35,18% de erro médio relativo); e para um número de Fourier da ordem de 3,0 a concordância apresenta uma sensível melhora (somente 9,15% de erro médio relativo). Portanto, a análise prévia do número de Fourier é proposta como uma técnica para auxiliar o uso do método do gradiente conjugado principalmente em problemas térmicos reais onde a natureza e a grandeza da fonte de fluxo de calor são desconhecidas. Assim, a análise *a priori* dos parâmetros de projeto *L*, $t_f \in \alpha$ através do número de Fourier, F_0 , pode representar a obtenção de resultados estimados confiáveis e com significado físico.

Agradecimentos

Os autores agradecem à CAPES, CNPq e FAPEMIG pelo apoio financeiro.

8. REFERÊNCIAS BIBLIOGRÁFICAS

- Alifanov, O. M., "Solution of an Inverse Problem of Heat Conduction by Iterations Methods", Journal of Engineering Physics, Vol. 26, N. 4, 1974.
- Alifanov, O. M. e Egorov, Yu. V., "Algorithms and Results of Solving the Inverse Heat Conduction Boundary Problem in Two-Dimensional Formulation", Journal of Eng. Physics, Vol. 48, N. 4, 1985.
- Beck, J.V., Blackwell, B. e St. Clair, C. R., "Inverse Heat Conduction, Ill-Posed Problems", Wiley Interscience Publication, New York, 1985.
- Busby. H. R. e Trujillo, D. M., "Numerical Solution to a Two-Dimensional Inverse Heat Conduction Problem", International Journal for Numerical Methods in Engineering, Vol. 21, Pp. 349-359, 1985.
- Guimarães, G., "Estimação de Parâmetros no Domínio da Freqüência para a Determinação Simultânea da Condutividade e Difusividade Térmica", Tese De Doutorado, Universidade Federal De Santa Catarina, Florianopólis, 1993.
- Haji-Sheikh, A. e Buckingham, F. P., "Multidimensional Inverse Heat Conduction Using the Monte Carlo Method", Journal of Heat Transfer, Vol. 115, Pp. 26-33, 1993.
- Incropera, F. P. e Dewitt, D. P., "Introduction to Heat Transfer, 2nd Ed.", Ed John Wiley & Sons, New York, 1990.
- Jarny, Y., Özisik, M. N. e Bardon, J. P., "A General Optimization Method Using Adjoint Equation for Solving Multidimensional Inverse Heat Conduction", International Journal of Heat And Mass Transfer, Vol. 34, pp.2911-2919, 1991.
- Melo, A. C. A., "Estimação da Temperatura de Corte Utilizando Problemas Inversos de Condução de Calor", Dissertação de Mestrado, Universidade Federal de Uberlândia, Uberlândia, Mg, Brasil, 1998.
- Murio, D. A., "The Mollification Method and the Numerical Solution of the Inverse Heat Conduction Problem by Finite Differences", Computers Math. Applic., Vol.17, No. 10, Pp. 1385-1396, 1989.
- Patankar, S. V., Numerical Heat Transfer, Hemisphere, Washington, 1980.
- Özisik, M. N., Heat Conduction, 2nd Ed., Ed John Wiley & Sons, New York, 1993.
- Raynaud, M. e Sassi, M., Étude de Faisabilité de la Détermination des Températures et Flux Surfaciques Transitoires d'une Enveloppe Sphérique a Partir de Mesures de Températures Internes", Rapport Final, Institut National Des Sciences Appliquees de Lyon, 1994.