SIMULAÇÃO NUMÉRICA DA TRANSFERÊNCIA DE MASSA EM ESFERÓIDES OBLATOS

João E. F. Carmo¹ Antonio G. B. Lima²

¹ Universidade Federal da Paraiba (UFPB), CCT, Departamento de Física, 58109-970, Campina Grande-PB, Brasil

² Universidade Federal da Paraiba (UFPB), CCT, Departamento de Engenharia Mecânica, 58109-970, Campina Grande-PB, Brasil E-mail: gilson@dem.ufpb.br

Resumo

Uma solução numérica da equação de difusão para descrever transferência de massa dentro de esferóides oblatos considerando coeficiente de difusão e condição de contorno constantes é apresentado. A equação de difusão no sistema de coordenadas esferoidais oblato foi usado, para um caso de bidimensional, e o método de volumes finitos foi empregado para discretizar a equação básica. A equação foi resolvida iterativamente usando o método de Gauss-Seidel. Como aplicação vários gráficos para várias razões de aspecto são apresentados. Os efeitos do número de Fourier e da razão de aspecto do corpo na taxa de secagem e teor de umidade durante o processo são apresentados. Para investigar o efeito da razão de aspecto, diferentes resultados do teor de umidade médio, são mostrados. Os resultados indicam que o modelo é consistente e pode ser usado para resolver outros casos como aqueles que incluem disco e/ou esfera com propriedades variáveis sob pequenas modificações.

Palavras Chave: Numérico, Secagem, Esferóide Oblato, Elipsóide

1. INTRODUÇÃO

As análises e previsões sobre um determinado processo físico geralmente são feitas a partir da solução de uma ou mais equações diferenciais que descrevem o problema. A solução é obtida conhecendo-se a priori as condições iniciais e de contorno da grandeza física que define o processo. Em vários problemas, as condições de contorno são tais que são melhor especificadas se estiverem definidas sobre superfícies esféricas, cilíndricas ou esferoidais quaisquer; e nestes casos, a equação diferencial em coordenadas cartesianas não é a forma adequada para se resolver o problema, e outro sistema de coordenadas deve ser utilizado.

A predição da secagem de sólidos úmidos envolve a solução de equações para transferência de calor e massa simultâneas, e portanto o tratamento em cálculos de Engenharia são mais complicados. No entanto simplificações são geralmente efetuadas para reduzir a complexidade do problema, por exemplo, assumir que a secagem ocorre sem os efeitos dos gradientes de temperatura dentro do sólido.

A descrição matemática de um fenômeno é tanto mais complexa quanto mais o modelo utilizado se aproxima da realidade, por exemplo, em processos de secagem pode haver um encolhimento do material e os coeficientes de difusão podem variar com o teor de umidade, portanto uma representação matemática pode resultar em equações não lineares tornando a solução analítica que representa um processo físico real muitas vezes de difícil obtenção. Nestes casos, uma solução numérica para o problema é bastante recomendável pois são mais gerais e podem incorporar com facilidade as mudanças sofridas pelo sólido durante o processo. As soluções analíticas e/ou numéricas da equação de difusão para vários casos, com coeficiente de difusão constante ou variável e condições de contorno constantes ou de tipo convectivo, para várias geometrias, podem ser encontradas em Carslaw & Jaeger (1957); Luikov (1968); Crank (1992) e Gebhart (1993); todos para paralelepípedo, cilindro e esferas. Para esferóides prolatos podem ser citados Haji-Sheikh & Sparrow (1966); Lima et al. (1997), Lima & Nebra (1999a), enquanto que para esferóide oblato cita-se Haji-Sheikh (1986).

O objetivo deste trabalho é apresentar o desenvolvimento e solução numérica de um modelo de difusão de massa em corpos sólidos com geometria do tipo esferoidal oblata, tendo por base a lei de Fick formulada com base num sistema de coordenadas esferoidais oblato, considerando a difusão da água na fase líquida e condição de equilíbrio na superfície do sólido. Desta forma, obteve-se através de simulações, a distribuição do teor de umidade no interior de corpos com geometria esferoidal oblata e o seu valor médio em função do tempo de secagem.

2. A MODELAGEM MATEMÁTICA

2.1 Formulação analítica

A equação de Fick no sistema de coordenadas cartesianas é dada por.

$$\frac{\partial M}{\partial t} = \frac{\partial}{\partial x} \left(D \frac{\partial M}{\partial x} \right) + \frac{\partial}{\partial y} \left(D \frac{\partial M}{\partial y} \right) + \frac{\partial}{\partial z} \left(D \frac{\partial M}{\partial z} \right)$$
(1)

onde M é o teor de umidade e D o coeficiente de difusão. A equação (1) escrita em coordenadas cartesianas (x,y,z) é ideal para descrever a difusão de massa em corpos com geometria retangulares tais como placas e paralelepípedos devendo ser transformada para o sistema de coordenadas esferoidais oblato em acordo aos objetivos do trabalho. A Figura 1 mostra um corpo com a geometria esferoidal oblato.

Figura 1. Características de um corpo esferoidal oblato

Vê-se que um corpo sólido pode ser formado a partir da rotação da superfície mostrada em torno do eixo z. As relações entre o sistema de coordenadas cartesianas (x, y ,z) e esferoidal oblato (μ , ϕ , ω), são dadas por (Stratton et al., 1941; Flammer, 1957; Abramowitz & Stegun, 1972):

 $x=L \cosh \mu \operatorname{sen} \varphi \cos \omega;$ $y=L \cosh \mu \operatorname{sen} \varphi \operatorname{sen} \omega;$ $z=L \operatorname{sen} h \mu \cos \varphi$ (2)

onde $L = (L_2^2 - L_1^2)^{1/2}$. Definindo ξ =senh μ , η =cos ϕ e ζ =cos ω , considerando a existência de simetria em torno de ω e D constante, com os cálculos dos coeficientes métricos e o laplaciano para o novo sistema de coordenadas, pode-se escrever a equação de difusão da seguinte forma:

$$\frac{\partial M}{\partial t} = \left[\frac{1}{L^2 \left(\xi^2 + \eta^2\right)} \quad \frac{\partial}{\partial \xi} \left(\left(\xi^2 + 1\right) D \quad \frac{\partial M}{\partial \xi} \right) + \frac{1}{L^2 \left(\xi^2 + \eta^2\right)} \frac{\partial}{\partial \eta} \left(\left(1 - \eta^2\right) D \quad \frac{\partial M}{\partial \eta} \right) \right] \quad (3)$$

Assumindo que o teor de umidade é inicialmente uniforme no interior do material e a existência de condições de equilíbrio na superfície do sólido tem-se:

$$M(\xi, \eta, t=0)=M_{o}; \qquad M(\xi=L_{1}/L, \eta, t)=M_{e} \quad (\text{na superfície})$$

$$\frac{\partial M(\xi, \eta=1, t)}{\partial \eta} = 0 \qquad \frac{\partial M(\xi, \eta=0, t)}{\partial \eta} = 0 \qquad \frac{\partial M(\xi=0, \eta, t)}{\partial \xi} = 0 \quad (4)$$

onde os valores apresentados para os gradientes, são decorrentes da simetria existente no interior do corpo. O elemento de volume diferencial no novo sistema de coordenadas, para o caso tridimensional vale:

$$dV = \frac{L^3(\xi^2 + \eta^2)}{\sqrt{1 - \zeta^2}} d\xi \, d\eta \, d\zeta \tag{5}$$

A difusão de umidade no sólido é gerada a partir de um gradiente de umidade no interior do mesmo. Como apresentado o teor de umidade no interior do sólido é dado em função da posição e do tempo, logo pode-se definir para o sólido um teor de umidade médio dado por:

$$\overline{\mathbf{M}} = \frac{1}{\mathbf{V}} \int_{\mathbf{V}} \mathbf{M} d\mathbf{V}$$
(6)

onde V é o volume total no domínio considerado ($0 \le \xi \le L_1/L \ e \ 0 \le \eta \le 1$).

2.2 Formulação numérica.

A formulação numérica para um problema qualquer começa com a identificação do domínio de interesse em questão, e, a partir daí a sua subdivisão em um número finito de sub-domínios. A proposta que se teve em mente desde o início deste trabalho é a difusão de massa num sólido gerado pela rotação Figura 1 em torno do eixo z. Pode ser observado para este sólido, planos de simetria que passam pelos pontos (x=0, y=0, z=0) e (x=0, y=0, z = L), em particular , o plano zy, e ainda com y \ge 0 e z \ge 0. Na Figura 2 são mostradas as linhas de ξ e η constantes, e que delimitam cada um dos pontos nodais P distribuídos pelo domínio. Os pontos N, S, E, W são pontos do domínio vizinhos a P. Esta é uma representação usual, com as letras significando Norte, Sul, Leste e Oeste, respectivamente.

Figura 2. Representação esquemática do volume de controle utilizado

Utilizando os seguintes parâmetros adimensionais .

$$\eta^* = \eta$$
 $\xi^* = \xi$ $t_m^* = \frac{Dt}{L^2}$ $V^* = \frac{V}{L^3}$ $M^* = \frac{M - M_e}{M_o - M_e}$ (7)

Derivando e substituindo na equação (3), têm-se.

$$\frac{\partial \mathbf{M}^{*}}{\partial \mathbf{t}_{m}^{*}} = \frac{1}{\left(\boldsymbol{\xi}^{*}\right)^{2} + \left(\boldsymbol{\eta}^{*}\right)^{2}} \left[\frac{\partial}{\partial \boldsymbol{\xi}^{*}} \left(\left(\boldsymbol{\xi}^{*}\right)^{2} + 1 \right) \frac{\partial \mathbf{M}^{*}}{\partial \mathbf{t}_{m}^{*}} \right] + \frac{1}{\left(\boldsymbol{\xi}^{*}\right)^{2} + \left(\boldsymbol{\eta}^{*}\right)^{2}} \left[\frac{\partial}{\partial \boldsymbol{\eta}^{*}} \left(\mathbf{l} - \left(\boldsymbol{\eta}^{*}\right)^{2} \right) \frac{\partial \mathbf{M}^{*}}{\partial \boldsymbol{\eta}^{*}} \right]$$
(8)

Na formulação, utilizando as variáveis adimensionais, as condições inicial e de contorno e de simetria e o valor médio assumem a forma:

$$M^{*}\left(\xi^{*} = \frac{L_{1}}{L}; \eta^{*}, t_{m}^{*}\right) = 0; \qquad M^{*}\left(\xi^{*}, \eta^{*}, t_{m}^{*} = 0\right) = 1; \qquad \overline{M}^{*} = \frac{1}{V^{*}} \int_{v^{*}} M^{*} dV^{*}$$
$$\frac{\partial M^{*}\left(\xi^{*}, \eta^{*} = 1, t_{m}^{*}\right)}{\partial \eta^{*}} = 0; \qquad \frac{\partial M^{*}\left(\xi^{*}, \eta^{*} = 0, t_{m}^{*}\right)}{\partial \eta^{*}} = 0; \qquad \frac{\partial M^{*}\left(\xi^{*} = 0, \eta^{*}, t_{m}^{*}\right)}{\partial \xi^{*}} = 0 \qquad (9)$$

Uma solução numérica do problema é obtida a partir da equação (8), integrando-se no volume e no tempo. Seguindo a formulação implícita e a prática B (Maliska,1995; Patankar, 1980) pode ser obtida a seguinte equação linear:

$$A_{P}M_{P}^{*} = A_{E}M_{E}^{*} + A_{W}M_{W}^{*} + A_{N}M_{N}^{*} + A_{S}M_{S}^{*} + A_{P}^{0}M_{P}^{0}$$
(10)

onde:

$$A_{E} = \frac{\left(1 - \left(\eta_{e}^{*}\right)^{2}\right)}{\delta\eta_{e}^{*}}\Delta\xi; \qquad A_{W} = \frac{\left(1 - \left(\eta_{W}^{*}\right)^{2}\right)}{\delta\eta_{W}^{*}}\Delta\xi^{*}; \qquad A_{P} = A_{E} + A_{W} + A_{N} + A_{S} + A_{P}^{0}$$
$$A_{N} = \frac{\left(\left(\xi_{n}^{*}\right)^{2} + 1\right)}{\delta\eta_{n}^{*}}\Delta\eta^{*} \quad ; \qquad A_{S} = \frac{\left(\left(\xi_{S}^{*}\right)^{2} + 1\right)}{\delta\xi_{s}^{*}}\Delta\eta^{*} \qquad A_{P}^{0} = \frac{\left(\left(\xi_{P}^{*}\right)^{2} + \left(\eta_{P}^{*}\right)^{2}\right)}{\Delta t_{m}^{*}}\Delta\eta^{*}\Delta\xi^{*}$$

A equação (10) é válida para todos os elementos internos do domínio inclusive os pontos de fronteira. Os cálculos foram iniciados com as condições iniciais já descritas e convergido quando os seguintes critérios foram alcançados em todos os pontos do domínio.

$$\left|\mathbf{M}^{*^{n-1}} - \mathbf{M}^{*^{n}}\right| \le 10^{-7}; \qquad \frac{\sum(\mathbf{A}_{K})}{\mathbf{A}_{P}} \le 1 \qquad \text{Para todos as equações.}$$
(11)

Onde n representa a n-ésima iteração num mesmo instante de tempo. Para resolver o conjunto de equações gerado a partir da equação (12) foi utilizado um programa computacional codificado em Fortran, desenvolvido por Lima (1999) e adaptado para esferóides oblatos.

3. RESULTADOS E DISCUSSÕES

O modelo matemático apresentado foi utilizado para predizer o teor de umidade em vários esferóides oblatos, variando sua forma desde esfera $(L_2/L_1=1,00)$ até disco circular $(L_2/L_1\rightarrow\infty)$, casos estes particulares extremos de um esferóide oblato. Uma malha uniforme de 20x20 pontos e um $\Delta t=20$ s forneceu resultados satisfatórios, uma vez que as razões de umidade ficaram praticamente independentes do número de pontos da malha e do incremento de tempo adimensional. Admitiu-se $L_2=1,00$, em todos os casos estudados.

Para validar o modelo, resultados numéricos do teor de umidade adimensional no centro de um esferóide oblato com razão de aspecto $L_2/L_1=2,00$, são comparados com resultados analíticos reportados por Haji-Sheikh (1986) conforme mostra a Figura 3.

Figura 3. Comparação entre os teores de umidade adimensional numérico e analítico (Haji-Sheikh, 1986), no centro de um esferóide oblato com $L_2/L_1=2,00$

A Figura 4 ilustra o efeito do número de Fourier na cinética de secagem de vários sólidos esferoidais oblatos com dimensões diferentes. A análise das curvas indica que o teor de umidade médio decresce com o aumento do Fo para qualquer razão de aspecto L_2/L_1 . É possível também verificar que para qualquer número de Fourier fixo, corpos com aproximação para disco e esfera, este decréscimo se dá com maior e menor rapidez, respectivamente. Isto é devido a maior área, o maior volume e a menor relação área/volume apresentado pela esfera comparado aos demais

sólidos. Estes resultados podem ser estendidos facilmente para o problema de difusão de calor, se a taxa de secagem for substituída pela taxa de resfriamento do corpo.

Com relação ao elipsóide com $L_2/L_1=1,001$, a partir dos resultados do teor de umidade obtidos no interior do material, pode-se dizer que, é um corpo aproximadamente esférico, inclusive apresentando independência do teor de umidade com a coordenada angular, ou seja, a razão de umidade é dependente da coordenada radial apenas, devido a simetria existente em torno do eixo x. Já com respeito ao elipsóide $L_2/L_1=100,0$ pode-se afirmar que é aproximadamente um disco circular, com teor de umidade praticamente independente da coordenada radial devido ao fato de $L_1\rightarrow 0$.

Figura 4. Teor de umidade médio adimensional em função de Fo, para vários esferóides oblatos

Nas Figuras 5a-b apresentam-se a distribuição do teor de umidade adimensional em função das coordenadas radial (η =1) e angular (ξ =0), respectivamente, para um esferóide oblato com L₂/L₁= 5,00, em vários número de Fourier. Observa-se após análise das curvas que o teor de umidade decresce em função do aumento de Fo; é fortemente dependente das coordenadas radial e angular, decrescendo com o aumento de ξ e o decréscimo de η .

As Figuras 6a-b mostram a distribuição do teor de umidade no interior do elipsóide com $L_2/L_1=1,43$, para vários Fo, em função das coordenadas $\xi \in \eta$, respectivamente. Verifica-se que o teor de umidade decresce com o aumento do número de Fourier e que sua dependência com a coordenada angular diminuiu substancialmente, quando comparada com o caso $L_2/L_1=5,00$. A forte dependência com a coordenada radial também é notada.

Um comportamento bastante interessante foi observado em corpos com geometria elíptica. Existem duas regiões distintas para difusão de massa: uma nas proximidades do ponto focal e a outra no restante do corpo. A medida que a relação L_2/L_1 aumenta, a difusão de massa nas proximidades do ponto focal aumenta, decrescendo para regiões mais afastadas do mesmo. Este efeito é reduzido com o decréscimo de L_2/L_1 até o caso limite de $L_2/L_1=1,0$, onde as regiões se fundem formando uma única região, com um comportamento da difusão de massa independente da coordenada angular.

Figura 5. Distribuição do teor de umidade no interior de um esferóide oblato em função das coordenadas a)radial e b) angular, para vários Fo e $L_2/L_1=5,00$

Figura 6. Distribuição do teor de umidade no interior de um esferóide oblato em função das coordenadas a)radial e b) angular, para vários Fo e $L_2/L_1=1,43$

Como um comentário final pode-se dizer que o modelo é muito versátil, podendo ser utilizado para descrever a variação do teor de umidade em corpos elipsoidais com variadas geometrias, com coeficiente de difusão constante ou variável e com diferentes condições de contorno sob pequenas modificações.

4. REFERÊNCIAS

- Abramowitz, M., Stegun, I. A., 1972, "Handbook of mathematical functions", Dover Publications, Inc., New York, USA, p. 752-772.
- Carslaw, H. S.; Jaeger, J. C., 1959, "Conduction of Heat in Solids", Oxford University Press, New York, USA, 510p.
- Crank, J., 1992, "The Mathematics of Diffusion", Oxford Science Publications, New York, USA, 414p.
- Flammer, C., 1957, "Spheroidal wave functions". Stanford University Press, Stanford, 220p.
- Gebhart, B., 1993, "Heat Conduction and Mass Diffusion", McGraw-Hill, Inc., New York, USA, 634p.
- Haji-Sheikh, A , Sparrow, E. M., 1966, "Transient heat conduction in a prolate spheroidal solid"; Transactions of the ASME: Journal of Heat Transfer, v. 88, n. 3, p. 331-333.
- Haji-Sheikh, A., 1986, "Integral methods in science and engineering". Hemisphere Publishing Corporation, New York, USA, Chapter: On solution of parabolic partial differential equations using Galerkin functions, p. 467-479.
- Lima, A. G. B., Nebra, S. A., Altemani, C. A. C., 1997, "Simulation of the drying kinetics of the silkworm cocoon considering diffusive mechanism in elliptical coordinate", Proceedings of Inter-American Drying Conference (IADC), Vol. B, Itu-SP, Brasil, p. 317-324.
- Lima, A. G. B.; Nebra, S. A., 1997, "Influência de parâmetros geométricos na cinética de secagem de elipsóides sólidos", Anais do XXV Congresso Brasileiro de Sistemas Particulados (XXV ENEMP), Vol.1, São Carlos-SP, Brasil, p. 195-202.
- Luikov, A.V., 1968,."Analytical Heat Diffusion Theory". Academic Press, Inc. Ltd., London, England, 684p.
- Maliska, C. R., 1995, "Transferência de calor e mecânica dos fluidos computacional", LTC, Rio de Janeiro, Brasil, 424 p.
- Patankar, S. V., 1980, "Numerical Heat Transfer and Fluid Flow", Hemisphere Publishing Coorporation, New York, USA, 197p.
- Stratton, J. A., Morse, P. M., Chu, L. J., Little, J. D. C., Huntner, R. A., 1941, "Elliptic cylinder and Spheroidal wave functions", The Tech. Press of M. I. T. and John Wiley & Sons, Inc., New York, USA, 127p.