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Abstract:

In this paper we study the transient heat conduction in a piston of a diesel engine, subjected to
a periodic boundary condition on the surface in contact with the combustion gases. An elliptic
scheme of numerical grid generation was used, so that the irregular shaped piston in the
physical domain was transformed into a cylinder in a computational domain. The timewise
variations of the temperature of several points in the piston are examined for different piston
materials, as well as for motored and fired engines.
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INTRODUCTION

       The solution of heat transfer problems in internal combustion engines is very complicated
for several reasons, including, among others: the cyclic temperature variation of gases inside
the engine; the parts involved, such as pistons, do not have a regular shape; such parts are
subjected to different heat transfer coefficients from the top, bottom and lateral sides, which
may vary during the cycle; and the estimation of heat transfer coefficients constitute, in itself, a
problem. A review of available theoretical and experimental works on the subject was
presented by Borman and Nishiwaki (1987).
       In the present paper we perform a two-dimensional axially symmetric finite-difference
analysis of the transient heat conduction in a piston of a two-stroke diesel engine. For such an
analysis, we transformed the irregular shaped piston from the physical domain into a cylinder in
a computational domain. The transient heat conduction equation was transformed into the
computational domain, where it was solved with finite-differences by using the ADI
(Alternating Direction Implicit) method (Peaceman and Rachford, 1955).
       The computer code used in this work is an improvement over another code developed by
our group in the past for the solution of a similar problem (Colaço and Orlande, 1996). The
problem addressed by Colaço and Orlande (1996) also involved the transient analysis of a
diesel engine piston; but considered for the computations time-averaged values for the heat
transfer coefficient between the gas and the piston surface, as well as for the temperature of the
gas inside the cylinder. In the present work we consider the periodic variations of the heat
transfer coefficient between the gas and the piston surface and of the temperature of the gas
inside the cylinder, for the computation of the transient temperature field inside the piston. In
this work we used the correlation of Eichelberg (Borman and Nishiwaki, 1987; Prasad and
Samria, 1990) due to its simplicity and because it does not involve many empirical constants.
The temperature variation of the gas inside the cylinder was computed by using a double-
Wiebe function for the heat release during combustion (Ramos, 1989).



PHYSICAL PROBLEM

      The physical problem considered here is the transient heat conduction in a diesel engine
piston. The piston is assumed to be axi-symmetric, so that asymmetries due to the piston pin
and oil cooling channels are neglected. The piston considered in the present work is the same
studied by Prasad and Samria (1990). The piston geometry with coordinates (in millimeters)
relevant for this study are presented in figure 1:

Figure 1. Geometry and coordinates

        The piston is heated through its top surface by the gas inside the combustion chamber.
The gas temperature (Tgas) and the heat transfer coefficient between gases and piston (hgas) are
assumed to vary within each engine cycle. The piston is cooled by oil on its bottom surfaces
and by a coolant fluid flowing through passages in the cylinder wall. The oil temperature (Toil),
as well as the heat transfer coefficient between oil and piston (hoil) are supposed to be constant.
The heat transfer to the coolant fluid is taken care by using a constant overall heat transfer
coefficient (h∞), which takes into account the heat transfer from the piston to the cylinder wall,
conduction through the wall, and convection from the wall to the coolant fluid. The fluid
temperature (T∞) is assumed to be constant.
      The mathematical formulation of such physical problem is given by:
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where hi, Ti and iT n∂∂  are, respectively, the heat transfer coefficient, the fluid temperature

and the normal derivative of temperature at each of the boundary surfaces Γi. α* and k are the
thermal diffusivity and thermal conductivity, respectively.

ANALYSIS

      The discretization of the piston presented in the figure 1 is difficult due to its irregular
shape. In order to overcome such difficulty, we neglected the effects of the piston rings and
transformed the irregular piston in the physical domain (z,r) into a cylinder in the
computational domain (ξ,η), as shown in figure 2.



      In figure 2, M and N are the number of lines of ξ and η variables, respectively. The
transformation above is defined by the solution of two elliptic partial differential equations,
used to generate the finite-difference grid for the piston (Thompson et al, 1985; Maliska, 1995;
Özisik, 1994).
       The problem given by Eqs. (1) is transformed into the computational domain (ξ,η), where
it is solved for the temperatures T(ξ,η,t). In the computational domain, problem (1) takes the
form:
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BOUNDARY CONDITION AT THE PISTON-GAS INTERFACE

        Several correlations for the heat transfer coefficient at the gas-piston surface are available
in the literature (Heywood, 1988; Ramos, 1989; Borman and Nishiwaki, 1987). In this paper,
we preferred to use the correlation of Eichelberg, due to its simplicity and because it does not
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Figure 2. Physical and computational domain



involve many empirical constants. Such correlation was developed for naturally-aspirated large
two-stroke and four-stroke diesel engines, such as the one under picture in this work.
Eichelberg’s correlation is given by
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where cm is the mean-piston-speed in m/s, while T and P are the instantaneous temperature in
Kelvin and pressure in kPa, respectively,  of the gas inside the cylinder.
       For the calculation of the instantaneous temperature and pressure inside the cylinder, we
assume that the compression and expansion processes are polytropic, with polytropic index of
1.3 (Ferguson, 1986). The mass of gas inside the cylinder is supposed constant and it is
assumed to be at atmospheric conditions (P = 105 Pa and T = 298 K) when the piston is at the
bottom-dead-center. Since we are dealing with a two-stroke engine, we assume here that
exhaustion and admission take place simultaneously at the bottom-dead-center, so that, at the
end of the expansion stroke, the gas inside the cylinder returns instantaneously to the initial
atmospheric conditions.
       During combustion, the relation between the cylinder volume, gas pressure and the rate of
heat release can be expressed as (Ferguson, 1986):
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where θ is the crankshaft angle in degrees.
       The rate of heat release during combustion can be obtained from a double-Wiebe function
in the form (Ramos,1989)
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where the subscripts p and d refer to premixed and diffusive combustion, respectively; Mp and
Md are shape factors corresponding to premixed and diffusive combustion, respectively; θp and
θd are the durations of the energy release in premixed and diffusive combustion, respectively;
and Qp and Qd characterize the heat release in premixed and diffusive combustion, respectively;
θig is the ignition angle. Such parameters are functions of the injection angle and can be
obtained in Ramos (1989).
       After the fuel is injected into the cylinder, several physical and chemical phenomena take
place before combustion can start. Such phenomena result on a delay time that can be
represented in the form of an Arrhenius-type expression such as
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       For the case under picture in this work, we used the following values for the constants
appearing in equation (7), obtained from Ramos (1989): A=53.5, n=1.23, Ta = 676.5 K.

RESULTS AND DISCUSSION

       For the results presented below, the values of various parameters were chosen as follows
(Prasad and Samria, 1990):(i) Initial temperature: To=20oC; (ii) Oil temperature: Toil=85oC;
(iii) Heat transfer coefficient to the oil: hoil=175W/m2oC; (iv) Cooling water temperature: 85oC;



(v) Overall heat transfer coefficient to the cooling water: h∞= 1000 W/m2oC; (vi) Engine Speed:
850 RPM; (vii) Compression ratio: 17; (viii) Piston diameter: 0.23 m; (ix) Stroke:     0.3 m; (x)
Injection angle: -20o.
       Four test-cases were examined in the present work, depending on the piston material and
if the engine is motored or fired, as summarized in table 1. For the case of a motored engine,
the compression and expansion processes were also assumed polytropic, with polytropic index
of 1.3.

Table 1. Test-cases
Test-case Piston material Engine condition

1 Aluminum Fired
2 Aluminum Motored
3 Cast iron Fired
4 Cast iron Motored

       The thermal conductivity and thermal diffusivity of aluminum and cast iron were taken,
respectively as, 204 W/moC, 8.418 x 10-5 m2/s, 54 W/moC and 0.970 x 10-5 m2/s (Ozisik,
1993).
       Before obtaining results for the piston transient temperature field by using the present
numerical approach, a grid convergence analysis is required in order to assess the numerical
error involved in the solution. Nine different grids were generated. The number M of ξ lines
and N of η lines of each grid are presented in table 2, while figure 2 shows grid G5, with
M=51 and N=66.

Table 2. Finite difference grids
Grid M N
G1 41 56
G2 51 56
G3 61 56
G4 41 66
G5 51 66
G6 61 66
G7 41 84
G8 51 84
G9 61 84

       The temperatures of the first 6 points shown in figure 2 were compared for the grids
presented in table 2. Such temperatures were obtained for time t=5 s and for a motored engine
with an aluminum piston. The time step used was ∆t=1x10-3s.
       The relative differences in percent for the temperatures computed with the different grids
used in this study are shown in table 3. This table shows that generally the grids are not
converged with N=56, because differences of the order of 2% can be observed for point 2,
when N is increased to 66, irrespective of the number of ξ lines (M) utilized. On the other,
differences of less than 0.5% can be noticed when N is increased to 84, as compared to N=66.
By taking into analysis now the grids with N=66 (G4, G5 and G6), we note that the grid is
basically converged in the ξ direction with M=51. A maximum difference of 1.1% is observed
for point 6, when M is increased from 51 to 61 (grids G5 and G6, respectively). From the
examination of table 3, we decided to use grid G5 for the foregoing analysis, with M=51 and
N=66. Such grid is basically converged in the ξ and η directions. Also, its CPU time was 4 min
and 23 s as compared to 5 min and 7 s for grid G6, thus enabling substantial savings on
computer time, without loss of accuracy. The CPU times correspond to a Pentium 200 MMX,
with 64 Mb of RAM memory, running under the Microsoft Fortran PowerStation 4.0 platform.



Table 3. Relative temperature difference in percent between grids
Point G1-G2 G2-G3 G4-G1 G5-G2 G6-G3 G4-G5 G5-G6 G7-G4 G8-G5 G9-G6 G7-G8 G8-G9

1 0.56 0.28 0.43 0.67 0.34 0.33 0.61 0.41 0.38 0.30 0.36 0.69
2 1.05 0.37 2.08 1.90 1.89 0.87 0.36 0.61 0.14 0.01 0.40 0.20
3 0.85 0.31 1.32 1.13 1.13 0.65 0.31 0.39 0.09 0.14 0.36 0.08
4 0.17 0.20 0.50 0.70 0.65 0.04 0.15 0.49 0.42 0.43 0.04 0.16
5 0.58 0.35 0.32 0.00 0.07 0.26 0.42 0.02 0.08 0.08 0.17 0.41
6 0.94 0.75 0.29 0.62 0.26 0.61 1.10 0.22 0.30 0.30 0.52 1.11

      After choosing the grid, we performed an analysis of the timewise variation of the
temperature in the piston for the different test-cases summarized in table 1.
      Figure 3.a-d show the variation for the temperature with time, until the quasi-steady-state
is reached, of selected points in the piston for cases 1-4, respectively. These figures show that,
initially, the temperature of the points near the cylinder wall is larger than for the other points.
Such is the case because initially the piston is assumed to be at a temperature smaller than that
of the cooling fluid and of the oil. By comparing figures 3.a-b with figures 3.c-d, we note that
the quasi-steady-state is reached faster for the aluminum piston than for the cast-iron piston, as
a result of the larger thermal conductivity and thermal diffusivity for aluminum.
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Figure 3. Temperature variation of selected points

       The quasi-steady-state temperature distributions in the piston are shown in figures 4.a-d,
for test-cases 1 to 4, respectively. Note in these figures the higher temperatures in the cast-iron
piston than in aluminum piston. Also, note the higher temperature gradients in the radial
direction in the top region of the cast-iron piston, resulting in larger thermal stresses than for
the aluminum piston.

CASE 1
(a)

CASE 2
(b)

CASE 3
(c)

CASE 4
(d)



Figure 4. Quasi-steady state temperature distribution in the piston

       Figure 5 presents the temperature variation of points 1 and 7 in the piston for test-case 1,
involving an aluminum piston in a fired engine, when the quasi-steady-state is established.
Figure 5 shows that the amplitude of variation for the temperature of point 1 is 1.94oC. For
point 7, located 1.39 mm below the gas-piston interface on the piston center-line, such
amplitude of variation is less than 1oC. Much smaller amplitudes of variation were observed for
the temperature of the cast-iron piston, due to its smaller thermal diffusivity as compared to
aluminum. Also, the amplitudes for motored engines are much smaller than for fired engines.
      These results are extremely interesting because they reveal the high-level of difficulty for
the solution of the inverse problem of estimating the periodic heat flux at the gas-piston
interface, by using temperature measurements taken below the interface. Such is the case
because the amplitudes of temperature variation are of the same order of magnitude of the
expected levels for the measurement errors. Hence, it would be impossible to distinguish if the
measured temperature variations result from the measurement errors or from the periodic
boundary conditions, and no useful information would be recovered from the temperature
measurements.

CASE 1
(a)

CASE 2
(b)

CASE 3
(c)

CASE 4
(d)



 
Figure 5.  Temperature variations of points 1 and 7 for the test-case 1.

CONCLUSIONS

       The analysis performed reveals that, for the cases studied, the steady-state was reached
earlier for aluminum pistons than for cast-iron pistons. Also, cast-iron pistons are subjected to
higher temperatures and larger temperature gradients, thus resulting in larger thermal stresses.
       Generally, the temperature variations, resultant from the periodic boundary condition at
the gas-piston interface, are largely damped within a quite small distance below the interface.
Therefore, the solution of the inverse heat conduction problem of estimating the periodic
boundary heat flux, by using temperature measurements below the surface, is quite difficult.
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