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Abstract 
 
The measurement of surface temperature by a thermocouple is subject to electrical, 
metallurgical and conduction errors. In this work the parameters which affect the conduction 
error were theoretically analysed considering a steady-state two-dimensional conduction 
through the semi-infinite body and the thermocouple wires. Firstly the equation and the 
boundary conditions of the mathematical model are numerically solved employing the finite 
element method, and a comparison was made with the analytical results provided by Jacob 
(1957). At the end of this paper it is analysed some way to minimise the conduction error in 
the surface temperature measurement.  
 
Key words: Conduction error, Surface temperature measurement, Thermocouple. 
 
1. INTRODUCTION 
 

In many applications the surface temperature measurement must be very accurate as for 
instance in determining local heat-transfer rates like in an exhaust-gas air heater or along an 
airfoil surface and in experimental heat transfer. The error analysis due to the conduction is 
extremely important not only to estimate the error but also to find ways to reduce it. Among 
the causes of conduction error the most significant are: the low thermal conductivity of the 
body, the thermocouple diameter, the heat loss from the thermocouple to ambient, the way of 
attachment, the imperfect contact between the thermocouple and the surface and thermal 
inertia of the thermocouple. A number of methods and simplifying assumptions have been 
utilized either for transient or steady-state situation and it is essential to mention the study 
developed by Jacob (1957) whose the analytical solution is utilized in this paper.  

Hennecke and Sparrow (1969) investigated the thermal processes associated with the 
presence of a local heat sink (or source) on the convectively cooled surface of a solid. The 
sink is due to the presence of a surface-mounted thermocouple, a pin fin or other surface-
mounted conductors .The heat transfer results and temperature distributions for the solid are 
determined  without reference to specific applications. The results are then applied to the case 
of the surface-mounted thermocouple, and the error in the measured temperature owing to the 
presence of the thermocouple is evaluated. Beck and Keltner (1983) developed mathematical 



models for the response of the surface mounted thermocouples on a thick wall. These models 
account for the significant causes of errors in both the transient and steady-state response to 
changes in the wall temperature. In many cases, closed form analytical expressions are not 
obtainable. 

In this work the error introduced by the thermocouple presence was investigated 
numerically considering the thermocouple as a single semi-infinite cylinder of homogeneous 
material and a perfect thermal contact between the thermocouple and the body is assumed, 
that is, without any thermal resistance. Moreover the body surface is perfectly insulated 
except at one small circle where the thermocouple is placed. The conduction error was 
evaluated in two arrangements, in the Figure 1(a) the thermocouple is attached directly to the 
semi-infinite body whereas in the Figure 1(b) a copper disk is placed between the surface of 
the body and the junction in order to reduce the conduction error. 

The results presented in this work will cover either free and forced convection for the 
configuration presented in Figure 1(a). 
 

  

Figure 1 a. Direct attachment of the 
thermocouple. 

Figure 1 b. Thermocouple attached to 
the copper disk. 

 
2. MATHEMATICAL STATEMENT OF THE PROBLEM 
 

Before going into the equations or even the mathematical models it is shown the steps  
and assumptions taken to consider the thermocouple wire as a single long-infinite cylinder of 
homogeneous material with equivalent thermal properties. 
 
2.1 Thermocouple equivalent wire 
 
 Taking a careful look at the Figure 1 (a) it is possible to note that two thermocouple wires 
are attached on the surface of the semi-infinite body and in order to state the two-dimensional  
mathematical model it is necessary to make some assumptions . 

In Figure 2 the two thermocouple wires of radii r1 and r2 shown in Figure 1 (a) are 
replaced by one cylinder with equivalent thermal conductivity kw and equivalent radius rw. 
The temperature indicated by the thermocouple is the temperature of the junction To and Tf  is 
the fluid temperature which is assumed to be uniform over the thermocouple length (L). In 
adittion, the body which is also shown in Figure 2 has the thickness Eb and radius Rb. 

The dotted lines in Figure 3 represent the equivalent cylinder area (Ae) whose frontal area 
is obtained adding the areas of the wires according to expression (1) assuming the same radius 
r1=r2, for both wires as it follows: 

 

22 1
22

1
22

2
2

1 rrrrrrr www =→=→=+ πππ  (1) 



 

 
 

Figure2. Body with equivalent cylinder. Figure 3. Equivalent 
area. 

Figure 4. Equivalent 
heat loss. 

 
Once the equivalent radius (rw) is obtained from equation (1), the equivalent convective 

heat transfer coefficient (he) is obtained from the heat loss by the equivalent wire (��e) of 
length (��) which is the sum of the heat loss by each individual wire (��w1 and ��w2), 
according to Figure 4 and it follows that: 
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where he is the equivalent convective heat transfer coefficient and hf is the convective heat 
transfer coefficient over each wire and Tw represents the surface temperature of the 
thermocouple resulting on the following relation for he. 

 

2fe hh =  (3) 

 
To determine the equivalent thermal conductivity (kw) it is necessary to get the long fin 

equation given by Ozisik, 1985 for the heat flow rate through the fin as: 
 

PhkAQ oθ=  (4) 

 
Summing up the two wires heat losses (Qw1+Qw2) and equalizing to the equivalent heat 

loss (Qe) gives: 
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where:Pe, P1, P2 are the perimeters of the equivalent wire and of each thermocouple wire; kw, 

kw1, kw2 are the equivalent thermal conductivity and thermal conductivity of each wire and 
θo=( oT -Tf) 

Then the equivalent thermal conductivity becomes: 
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2.2 Energy equation  
 
The semi-infinite body is approximated by a finite body with large dimensions and from 

now it is possible according to the Figure 2 express the governing equations in a cylindrical 
coordinate system for the two-dimensional steady-state heat conduction with constant thermal 
conductivity without heat generation, as presented by Ozisik (1985): 
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where k is the thermal conductivity (k=kw in the equivalent thermocouple wire and k=kb in the 
solid region) and T the temperature in any region. 

 
2.3 Boundary conditions 
 

The boundary conditions associated to the heat conduction equation and the heat flux for 
the domain represented in Figure 2 are given by: 

 
For r=0→ 0/ =∂∂ nT                                  (8)  Fo r =0→ 0/ =∂∂ nT                                 (11)  
For r=rw→ )(/ few TThnTk −=∂∂−          (9)  For z=L→ 0/ =∂∂ nT                                (12) 

For r=rb→ 0/ =∂∂ nT                                (10) For z=L+Eb→ T=Tb                                  (13)  
 
where n represents the normal unit vector outward to the domain surface. 
 
2.4 Surface temperature measurement error 
 

The error (E) in surface temperature measurement is defined as the difference between 
the temperature read by the thermocouple or even the temperature of the junction (To) and the 
temperature of the body (Tb ) which is given by equation (14) whereas (To) is numerically 
determined by equation (15), as it follows: 
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3. NUMERICAL SOLUTION 
 

This problem was numerically solved employing a program based upon the Galerkin 
finite element method. This program uses a quadratic interpolation polynomial to convert 
continuous partial differential equations into discrete nodal equations. The program works  
with a triangular non structured adaptive mesh with six nodes per element. The mesh 
refinement is automatically processed and presented more intense refinement in regions which 
have large curvature, geometrically small and subjected to high temperature gradient. The 
algebraic equations system has been solved through the iterative conjugate-gradient method, 
using the incomplete Cholesky decomposition as described in Macsyma Inc. (1996).  

 
 



4. ANALYTICAL MODEL 
 
The temperature measurement error in the arrangement shown in Figure 1 (a) was 

analysed by Jakob (1957) using one-dimensional approach in which the thermocouple was 
treated as a pin fin and consequently the heat flow (Qe) from a surface at temperature T0 into 
an infinitely long cylinder or wire is: 
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This amount of heat will be carried away from the semi-infinite body according to the 

equation given by Groeber (1921): 
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Comparing equations (16) e (17) gives the final equation for the error determination : 
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4.1 Free convection 
 

The Nusselt number depends on Grashof and Prandtl numbers then according to Jakob 
(1957), when the product of Grashof number (Gr) and Prandtl number (Pr) is less than 10-5 
the Nusselt number approachs to a constant value equals to 0.4 as it follows :  
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where kg is the fluid thermal conductivity : 
 
Substituting equation (19) in equation (18) results in : 
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It is essential to pay closer attention for the natural convection in this specific range of 

(Gr Pr) because the error estimated does not depend on the wire diameter but in the 

dimensionless group 2/ bgw kkk , so that the error can not be reduced by employing thinner 

thermocouple wires. 
 
4.2 Forced convection 
 

For forced convection it will be extremely important to know the Reynolds number and 
the range in which the flow will be studied. It is observed that the term inside the square root 



2/ bwew krhk  of equation (18) can be correlated with dimensionless parameters of convective 

heat transfer as Reynolds, Nusselt and Prandtl. According to Ozisik, (1985) it is possible to 
correlate the Nusselt with the Reynolds number, as it follows: 
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This correlation agrees with the experimental data within ±25 % in the range of variables 
40<Re<105 and 67<Pr<300, where: Re=Reynolds number = ν/2 0ru∞ ; u∝ = fluid free stream 

velocity; ν=cinematic viscosity. 

Substituting equation (21) in the term 2/ bwew krhk  of equation (18) it results that the surface 

temperature measurement error depends on the 2/ bgw kkk  parameter, the Reynolds number 

and the Prandtl number. Analysing the equations it is possible to note that unlike the free 
convection, in forced convection the diameter of the wire does interfere in the estimated error 
value of the surface temperature measurement. 
 
5. RESULTS  
 

In this work, the following numerical values are employed: Tf =273.15 K, Tb=373.15 K, 
kw=381W/m.K, rw=5.08 10-4m, kg=0.0277W/mK(air), Pr=0.7. Concerning the body properties  
two kinds of materials were analysed such as concrete and diatomaceous earth with the 
thermal conductivities kb=0.81 W/m.K and kb=0.086 W/m.K respectively. 

 
5.1 Free and forced convection 
 

The numerical results are based on geometry and boundary conditions of finite body. 
When the body dimensions are not much larger than the thermocouple radius (rw), there is a 
difference between the results from this two-dimensional numerical analysis of this work with 
the semi-infinite body one-dimensional analytical data of Jakob (1957). 

Figure 5 shows the influence of the body thickness in the error on surface temperature 
measurement and it is observed that for body thickness less than Eb/rw=8 the disturbance 
caused by the thermocouple is more pronounced affecting the temperature distribution on the 
other side of the body as shown in Figure 6 (a) for Eb/rw=2. Figure 6 (b) shows that the 
thermocouple attachment do not disturb the temperature near the other surface in the case 
Eb/rw=50. When Eb/rw>8 (diatomaceous earth) and Eb/rw>16 (concrete) the finite body 
behaves as a semi-infinite body according to Figure 5. 

Figure 7 also shows that when the body radius Rb is small, there is an increase in error 
due to a disturbance in the isothermal lines as a result of the finite body dimensions.  

Figure 8 indicates that when the thermocouple length is really small the two-dimensional 
results are very different from the analytical ones because of the two-dimensional heat 
conduction near the thermocouple root . 

For forced convection, keeping the term 2/ bgw kkk  constant and varying Reynolds and 

consequently the Nusselt number it is verified in Figure 9 that the higher the Reynolds 
number the higher is the convective heat transfer (he) then raising the error on the surface 
temperature measurement . 

Moreover, the numerical results for (Eb/rw=50, Rb=200 rw, L=750 rw) behaves in the same 
way as the analytical ones indicating a small difference for high Reynolds numbers.  
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 (a) Eb/rw =2 

 

 (b) Eb/rw=50 

Figure 5. Body thickness analysis (L=750 rw 

and Rb=200 rw). 
Figure 6. Isothermal lines for short (a) and  
large (b) body thickness (L=750 rw and 
Rb=200 rw). 
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Figure 7. Body radius analysis (L=750 rw and 
Eb/rw=50). 

Figure 8. Thermocouple length (Eb/rw=50 
and Rb=200 rw). 

 
6. REDUCING THE ERROR IN SURFACE TEMPERATURE MEASUREMENT 
 

Among many ways to reduce the error in surface temperature measurement it is important 
to mention the result obtained when the arrangement of Figure 1 (b) is used, that is, a copper 
disk is placed between the thermocouple tip and the body surface. Table 1 shows a 
comparison of the numerical results employing the arrangement in Figure 1 (a) and (b). These 
results were obtained using the following numerical values: kw=51.92 W/mK, kg=0.0276 
W/mK, rw=5.08 10-4m, Eb/rw=50, L=750 rw, Rb=200 rw, Tb=373.15 K, Tf=273.15 K. This 
analysis were taken for three dissimilar bodies materials such as copper, steel and 
diatomaceous earth with their respective thermal conductivity equal to: 346.1; 51.92 and 
0.086. Furthermore the copper disk placed between the thermocouple and the body has the 
following properties and dimensions: thermal conductivity k=346.1, radius r=50 rw and 
thickness 8.10-4m. According to Table 1 it is noticed that the lower the thermal conductivity 
of the body material whose temperature is to be measured the higher is the error in the 



measurement. When the body conductivity is high the effect of the copper disk is small, but in 
the case of diatomaceous earth there is a sharp reduction in the temperature measurement.  
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Figure 9. Reynolds number variation 

 
Table 1. Error from the numerical analysis (Tb-To). 

 
Material Thermal conductivity (W/mK) Figure 1 (a) Figure 1 (b) 
Copper 346 0.170 0.170 
Steel 51.92 1.107 0.254 
Diatomaceous earth 0.086 87.350 8.249 

 

7. CONCLUSIONS 
 

The results presented show that the analytical approach is applied for limiting conditions 
as for instance for body with large dimensions. On the other hand the numerical approach 
indicates which dimensions both approaches are compatible and shows that for bodies with 
really small dimensions the errors are larger than the values from the one-dimensional 
analytical approach. 
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