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ABSTRACT

The present work aims at applying of the ideas on the so-called Coupled Integral Equations
Approach (CIEA) to one-dimensional thermal wave propagation problem in a finite solid medium,
offering an improved lumped-differential formulations. The non-stationary heat conduction problem is
studied by assuming values of the thermal relaxation time for the solid medium, and boundary
conditions of the prescribed heat flux and convection heat transfer are used to illustrate the powerful of
this approach. The employment of the CIEA in the hyperbolic heat conduction equation results in a
system of two or three ordinary differential equations for the average temperature, surface temperature
and a combination of the surface temperature with time surface temperature derivative, respectively.
The Runge-Kuta methods, from DIVPRK routine of the IMSL (1987), is used to obtain results for the
average temperature in the medium as function of the thermal relaxation time and of the boundary
conditions adopted.
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1. - INTRODUCTION

The classical theory of heat conduction is based on Fourier's law: Tq ∇−= k . This
constitutive equation relates the heat flux to the temperature gradient. In accord to this law, heat
propagates with an infinite speed within a conducting medium. In despite such an unacceptable
physical mechanism notion of energy transport in solids, Fourier's Law is accurate in describing heat
conduction in most engineering situations encountered in daily life. To circumvent the known
deficiencies of Fourier's law to describe of problems involving a high rate of temperature change, the
concept of heat transmission by waves has been introduced (Cattaneo, 1958; Joseph and Prezioasi,
1989, 1990; Özisik and Tzou, 1994; Kronberg et al., 1998). However, there are practical situations in
which the effects of the finite speed on heat propagation becomes important. For such situations, a
constitutive equation which allows a time lag between the heat flux vector and the temperatures
gradients is given by:

T
q

q ∇−=
∂
∂τ+ k

tr (1)



where τ is the relaxation time, an intrinsic property of medium. This equation, combined with the
energy equation
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gives a hyperbolic heat conduction equation, which assuming constant physical properties as follow:
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this equation describes the heat propagation in solids with a finite speed ( ) 2/1
r/ τα=ν , where α is the

thermal diffusivity.
The hyperbolic heat conduction equation has also been applied for heat transfer in materials

with non-homogeneous inner structures, such as suspensions, pastes and meat products (Brazhnikov et
al. 1975; Kaminski's, 1990). The values of the relaxation time τr for homogeneous materials have been
showed by Sieniutycz (1977) to range from 10-8 to 10-10 sec for gases, and from 10-10 to 10-12 sec for
liquids and dielectrics solids. For materials with non-homogeneous inner structure, Brazhnikov et al.
(1975) report τr = 20 to 30 sec for meat products and experimental results of Kaminski's (1990) show
τr = 20 sec for sand and τr = 29 sec for NaCCO3. According to Barletta (1995) in most experimental
studies relating the phenomenon of finite-speed propagation of thermal signals, often called second
sound, have been performed at low temperatures. For instance, this phenomenon has been observed in
NaF at ≈ 10 K (Jackson and Walker, 1971), while it has been shown that the speed of second sound in
Bismute at ≈ 3.4 K is 780 m s-1 (Narayanamurti and Dynes, 1972). Further experimental validations of
the hyperbolic heat conduction equation could be based on the comparison between solutions of the
equation and measurements of the temperature field performed by suitable experimental apparatuses.
Then, values of the thermal relaxation time could be obtained using parameter estimation method. In
this context, Orlande and Ozisik (1994) have developed an inverse analysis for simultaneous
estimation of thermal diffusivity and relaxation time associated with a hyperbolic heat conduction
equation, by using simulated temperature recordings taken in a semi-infinite medium subjected to a
heat flux boundary condition.

In the literature, many others works, experimental and theoretical, have been carried in years.
For example, Bartella and Zanchini (1996) developed an analysis of the compatibility of Cattaneo-
Vernotte's constitutive equation for the heat flux density vector with the hypothesis of local
thermodynamic equilibrium, this compatibility is checked out by determining the entropy production
rate per unit volume. Antaki (1997) have obtained a solution for a semi-infinite slab with surface
convection for the cases of heating and cooling of a slab. Liao (1997) has applied the general boundary
element method to solve 2D unsteady non-linear heat transfer problems of inhomogeneous materials,
governed by the so-called hyperbolic heat conduction equation.

The solution of multidimensional heat conduction problems presents difficulties associated
with a marked analytical involvement and also requires a considerable computational effort.
Considering these facts, it becomes of interest engineering practice, to propose simpler formulations of
the original partial differential systems, through a reduction of the number of independent variables in
the multidimensional problems, by integration of the original partial differential system in one or more
space variables, but retaining some information in the direction, whereas integration was performed,
provided by the related boundary conditions (Cotta and Mikhailov, 1997; Correa and Cotta, 1999).
Different levels of approximation in such mixed lumped-differential formulations can be used, starting
from the plain and classical lumped system analysis, towards improved formulations obtained through
Hermite-type approximations for integrals (Hermite, 1878). In this work, the so-called coupled
integral equations approach (CIEA) (Cotta and Mikhailov, 1997; Correa and Cotta, 1999) is employed
to improve lumped-differential formulations in a problem of the hyperbolic heat conduction by
considering a slab subject to the boundary conditions of prescribed heat flux and convection heat
transfer in the boundaries.



In the present work, we consider the following three approximations for integrals (Hermite,
1878):

H0,0 Approximation (Trapezoidal Rule)

( ))h(f)0(f
2

h
dx)x(f

h

0
+≅∫ (4.a)

H1,1 Approximation (Corrected Trapezoidal Rule)
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2. - ANALYSIS

For illustration of the proposed approach, we consider a hyperbolic heat conduction in a slab
of thickness L, initially at the uniform temperature T0, subject to a prescribed heat flux at boundary
x = 0 and dissipating heat by convection from the boundary surface at x = L into a fluid maintained at
a constant temperature, T∞., and with a heat transfer coefficient h. Assuming constant thermophysical
properties k and α, and no internal generation, this transient formulation in dimensionless form is
written as:
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where the various dimensionless groups are given by:
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and the function F in right side of the eq. (5.d) is

)('Q~)(Q)(F r ττ+τ=τ (7)

2.1 – The Classical Lumped System Analysis

We seek now for a simplified formulation for the partial differential system (5), through
elimination of the spatial dependence, i.e., by integration out the independent variable η over the



domain 0 ≤ η ≤ 1, in eq. (5.a), so that a system of ordinary differential equations is obtained for the
average and surface temperatures, )(τθ  and )(),1( 1 τθ≡τθ , respectively. From the definition of )(τθ ,
given bellow:
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eq. (5.a) is operated on with ∫ η
1

0
d , to yield, after, invoking the boundary conditions (5.d,e):

)(F)(BiG
d

)(d

d

)(d~
2

2

r τ=τ+
τ
τθ+

τ
τθτ ,      0>τ (9.a)

0
d

)0(d
      ; 1)0( =

τ
θ=θ (9.b,c)

where

τ
τθ

τ+τθ≡τ
d

)(d
)()(G 1

r1 (10)

Making the usual assumption in the classical lumped system analysis that the surface
temperature at η = 1 is essential equal to the average value, or

)()(1 τθ≅τθ (11)

which provides the approximate classical formulation
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Eqs. (12. b, c) were obtained by the same process, i.e., eqs. (5. b, c) were also operated with

∫ η
1

0
d  operator. The approximation in eq. (11) imposes very strict applicability limits, reflected in

terms of the Biot number value. As a rule of thumb the classical lumping approach is in general
restricted to problems with Bi < 0.1.

2.2 – Improved Lumped-Differential Formulations

Now, the objective is to retain more information about the physical phenomenon in the
direction to be eliminated through the application of lumping procedures. Thus, the basic idea behind
the improved approach is finding a relation
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developed after applying the Hermite approximations, Hα,β, given by eqs. (4), on the integrals that
define the average temperature and heat flux in the spatial coordinate to be eliminated. Depending on
the problem formulation, different levels of approximation can be achieved with increasing analytical
involvement.



H0,0 / H0,0 Approximation

Considering the H0,0 - approximation, eq. (4.a), one finds the approximate relations bellow for
the auxiliary averaged temperature and heat flux, respectively:
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making use of the boundary conditions (5.d, e) and )(),1( 1 τθ≡τθ , and after substituting in eq. (9.a),
we obtain the following ordinary differential system for the average and surface temperatures,
respectively.
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where G(τ) is defined by eq. (10).

H0,0 / H1,1 Approximation

In this formulation, the heat flux is approximated through the corrected trapezoidal rule, eq.
(4.b), taking into account the temperature derivatives at the boundaries
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using the PDE (5.a) in the limit when η → 0 and η → 1, respectively, to obtain 22 / η∂θ∂  at the
boundaries and by making use of eq. (13.a) together with boundary conditions (5.d,e), we obtain the
following equations for )(1 τθ  beyond of eq. (9.a) for )(τθ :
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H1,1 / H0,0 Approximation

In this case, the average temperature is approximated through the corrected trapezoidal rule,
eq. (4.b), to yield:
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and by making use of eq. (14.b) together with boundary conditions (5.d,e), we obtain the following
additional equation for 1θ :
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H1,1 / H1,1 Approximation

Now, the average temperature and heat flux are approximated through the corrected
trapezoidal rule, eq. (4.b), and given by eq. (16) for the heat flux, and eq.(18) for average temperature.
Combining these two equations with boundary conditions, we obtain the following additional
equations for )(1 τθ  e )(G τ :
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H0,1 / H0,0 Approximation

In this case, the average temperature is approximated through eq. (4.c):
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by making use of eq. (14.b) and of boundary conditions (5.d,e), we obtain the following additional
equation for )(1 τθ
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H0,1 / H1,1 Approximation

Applying the approximation given by eq. (4.c) in average temperature (see eq. (21)), and by
making use of boundary conditions, the following additional equations for )(1 τθ  e )(G τ , are
obtained:

( ) ( ) )(F6)()(72)(BiG30
d

)(dG
Bi6

d

)(Gd~Bi 12

2

r τ−τθ−τθ=τ+
τ
τ++

τ
ττ ,   0>τ (23.a)

)(G)(
d

)(d~
1

1
r τ=+τθ+

τ
τθ

τ ,                                                                    0>τ (23.b)

1)0( =θ ;     0
d

)0(d =
τ

θ
;     1)0(1 =θ ;     1)0(G = ;     0

d

)0(dG =
τ

(23.c-g)



3. - RESULTS AND DISCUSSION

Numerical results for average temperature were computed for different values of Biot number
(Bi), dimensionless relaxation time ( r

~τ ) and several wave pulse form for )(Q τ . The ordinary
differential equations systems showed above are solved by routine DIVPRK from IMSL Library
(IMSL LIBRARY, 1987) with a relative error target of 10-4 prescribed by the user, for all potential of
the system.

Table 1. - Comparison of the approximate formulations, for )(Q τ = 0 and 6
r 10~ −<τ , against the exact

solution for )(Q τ = 0 and 0~
r =τ .

Bi = 0.1
τ Classical H0,0/H0,0 H0,0/H1,1 H1,1/H0,0 H1,1/H1,1 H0,1/H0,0 H0,1/H1,1 Exact

0.01 0.9990 0.9990 0.9990 0.9990 0.9990 0.9990 0.9990 0.9990
0.10 0.9900 0.9903 0.9901 0.9904 0.9902 0.9904 0.9902 0.9902
0.50 0.9512 0.9524 0.9522 0.9528 0.9525 0.9528 0.9525 0.9526
1.00 0.9048 0.9070 0.9069 0.9078 0.9075 0.9078 0.9075 0.9076
2.00 0.8187 0.8227 0.8226 0.8240 0.8238 0.8240 0.8238 0.8239
3.00 0.7408 0.7463 0.7461 0.7480 0.7479 0.7480 0.7478 0.7479

Bi = 1.0
0.01 0.9900 0.9920 0.9902 0.9925 0.9902 0.9925 0.9902 0.9907
0.10 0.9048 0.9231 0.9138 0.9277 0.9157 0.9277 0.9150 0.9196
0.50 0.6065 0.6703 0.6641 0.6873 0.6779 0.6873 0.6759 0.6811
1.00 0.3679 0.4493 0.4477 0.4724 0.4680 0.4724 0.4660 0.4704
2.00 0.1353 0.2019 0.2034 0.2231 0.2231 0.2231 0.2215 0.2244
3.00 0.0498 0.0907 0.0924 0.1054 0.1063 0.1054 0.1053 0.1070

Bi = 5.0
0.01 0.9512 0.9780 0.9546 0.9814 0.9541 0.9814 0.9532 0.9640
0.10 0.6065 0.8007 0.7363 0.8290 0.7320 0.8290 0.7056 0.7814
0.50 0.0821 0.3292 0.3285 0.3916 0.3591 0.3916 0.3314 0.3852
1.00 0.0067 0.1084 0.1208 0.1533 0.1506 0.1533 0.1362 0.1625
2.00 4.55E-5 0.0117 0.0163 0.0235 0.0265 0.0235 0.0230 0.0289
3.00 3.23E-7 0.0013 0.0022 0.0036 0.0047 0.0036 0.0039 0.0051
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Fig. 1 - Wave pulses for )(Q τ .

In order to the validate the numerical code developed here, it is showed in Table 1 a
comparison of results for the average temperature obtained with improved formulations against those
computed from an analytical solution for the case )(Q τ = 0 and 0~

r =τ . In Table 1 it is observed that
for the range of Bi < 0.1, all the approximate formulations show good agreement against exact
solution, and can be accepted as sufficiently accurate for most engineering purposes. However, when



Biot number is increased, the classical approximation is already markedly inaccurate, especially for
increasing values of the dimensionless time, while the H1,1/H0,0, H1,1/H1,1, H0,1/H0,0 and H0,1/H1,1

formulations are still quite reasonable.
In order to verify powerfulness of these improved formulations, two types of wave pulse for )(Q τ
were studied, i. e., square and triangular wave pulses. Figure 1 shows the square and triangular wave
pulses adopted here in the range 0 ≤ τ ≤.3 for the dimensionless time. In Figure 2 and 3 it is analyzed
the influence of the relaxation time and Biot number in the average temperature for )(Q τ  given by a
square wave pulse, respectively.
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Fig. 2 - Average Temperature for Square Wave
pulse and Bi = 0.01.
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Fig. 3 - Average Temperature for Square Wave
pulse and Bi = 5.

More specifically, in the Fig. 2 it is noticed that for Bi = 0.01 the Classical formulation is in
good agreement with all other approximate formulations for the three dimensionless relaxation time
adopted. It can also be observed that as the dimensionless relaxation time increases there is a decrease
in the value of the average temperature for τ = 3. This fact can be explained by the low speed of
propagation of thermal signal, and because for square wave pulse the function )(Q)(F τ=τ  due to

0)('Q =τ  (see eq. (7)). In Fig. 3 for the case of Bi = 5, a higher discrepancy among the results of the
classical formulation and those from other approximations can be observed. The temperature decreases
until the beginning of the perturbing wave (τ = 1), then it start to increase, due to an input of energy
flux at η = 0, until the dimensionless time τ = 2. The temperature begins to decrease again after the
end of perturbing wave. The influence of the perturbing wave on amplitude of the average temperature
is less important for great values of the dimensionless relaxation time.
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Fig. 4 - Average Temperature for Triangular
Wave pulse and Bi = 0.01.
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Fig. 5 - Average Temperature for Triangular
Wave pulse and Bi = 5.

Similar analysis can be done for Figures 4 and 5. However, in Fig. 4, for the case of Bi =0.01
it is verified that as the dimensionless relaxation time increases the average temperature also increase.
Specially at the dimensionless relation time 1r =τ  the average temperature increases according to a

rate of approximately 0.7, until to reach the dimensionless time τ = 3, because for the case of a
triangular wave pulse there is a linear dependence between the function F(τ) and rτ , i.e.,

r)(Q)(F τ+τ=τ  due to 1)('Q =τ . For the case of Bi = 5 and 1.0r ≤τ (see Fig. 5) the shape of the
average temperature curve suffers a direct influence of the triangular wave pulse prescribed at the
boundary η = 0. For small relaxation time this effect is caused by the immediate response of the
material to the perturbation on its boundary (approximately Fourie's law) and for higher dimensionless
relaxation time the influence of the perturbation is dumped as can be seen in figures above.

4. - CONCLUSIONS

The hyperbolic heat conduction in a slab, subject to boundary conditions of the prescribed heat
flux and convection heat transfer has been analyzed by employing the ideas in the so-called Coupled
Integral Equations Approach (CIEA), offering reliable results for the average temperature in range of
Biot numbers and dimensionless relaxation times analyzed. Results were computed for two different
wave pulses demonstrating that the average temperature predicted with hyperbolic heat conduction
equation can be significantly different form those of the Fourier equation for higher values of the
relaxation time.
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