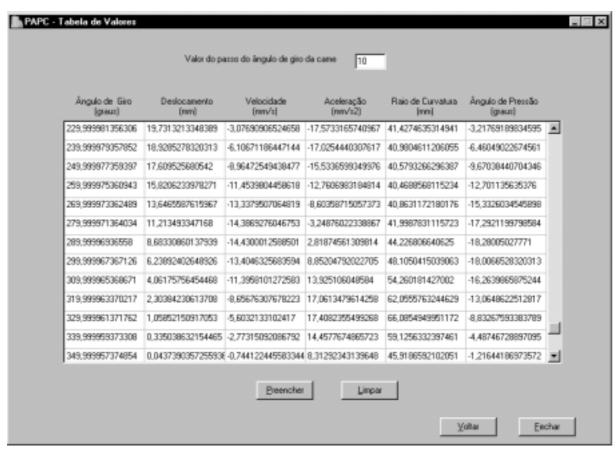
Das variáveis acima, ρ_{min} corresponde ao menor valor fornecido, ρ_r é o raio do rolete, R corresponde à distância entre o centro de rotação da came e o centro do rolete do seguidor, θ é o ângulo de rotação da came, $v(\theta)$ é a função velocidade e $a(\theta)$, a função aceleração.

3. CONCLUSÃO

Como pôde-se observar, a entrada e a saída de dados do programa apresentam-se de forma bastante simples e objetiva. Deste modo, a partir do programa desenvolvido, torna-se mais fácil para o estudante de engenharia mecânica o entendimento a cerca do projeto de cames, assim como a compreensão de conceitos básicos e características relacionadas ao assunto. Por exemplo, na disciplina de Mecanismos ministrada no Curso de Engenharia Mecânica da Universidade Federal do Ceará, o aluno a conclui ciente da existência das curvas cicloidal, harmônica e polinomial de oitava ordem e que uma combinação apropriada destas funções pode resultar um movimento característico para o seguidor. No entanto, no decorrer da mesma, o aluno não dispõe de uma ferramenta que o auxilie na visualização da came a qual irá garantir ao seguidor tal movimento característico. O programa surge, então, como ferramenta de apoio visando a auxiliar as disciplinas da área de Projeto e principalmente a disciplina de Mecanismos.

6. AGRADECIMENTOS

Ao PET – Programa Especial de Treinamento.


5. REFERÊNCIAS

- Erdman, A. T., 1993, Modern Kinematics: Developments in the Last Forty Years, John Wiley & Sons, New York
- Grosjean, J., 1991, Kinematics and Dynamics of Machanisms, McGraw-Hill, Singapore
- Kimbrell, J. T., 1991, Kinematics Analysis and Synthesis, McGraw-Hill, New York
- Mabie, H. H. & Reinholtz, C. F., 1987, Mechanisms and Dynamics of Machinery, John Wiley & Sons, New York
- Martin, G. H., 1982, Kinematics and Dynamics of Machines, McGraw-Hill, London
- Norton, R. L., 1992, Design of Machinery, McGraw-Hill, Singapore
- Sandor, G. N. & Erdman, A. G., 1984, Mechanism Design: Analysis and Synthesis, Prentice-Hall, New York

Nas expressões acima, R_b corresponde ao raio de base da came, θ é o ângulo da came e $S(\theta)$ é a função que define um dado trecho de curva do movimento do seguidor.

2.3 Tabela de valores

Ao final, são fornecidos valores da elevação, velocidade e aceleração do seguidor e do raio de curvatura e do ângulo de pressão da came para ângulos de giro da mesma de acordo com o passo a ser indicado (Ver Fig. 5).

Figura 5. Tela da tabela de valores

A partir dos valores do ângulo de pressão, pode-se verificar se o mesmo excede 30⁰ ou 35⁰. Tais valores são estabelecidos como máximos para a maioria dos sistemas.

Sendo θ o ângulo da came, $S(\theta)$ a função que define um dado trecho de curva do movimento do seguidor, R a distância entre o centro de rotação da came e o centro do rolete do seguidor, para a determinação do ângulo de pressão α utilizou-se a seguinte expressão (Kimbrell, 1991):

$$\alpha = \arctan[dS/(Rd\theta)] \tag{3}$$

A partir dos valores do raio de curvatura da came (no caso do seguidor de rolete, tais valores se referem ao raio de curvatura da superfície primitiva), é possível verificar se a came já irá apresentar ponta ou rebaixo ($\rho_{min} < \rho_r$). Para o cálculo do raio de curvatura ρ utilizou-se a seguinte equação:

$$\rho = \{R^2 + [v(\theta)]^2\}^{3/2} / \{R^2 + 2[v(\theta)]^2 - R[a(\theta)]\}$$
(4)

Uma vez dispondo-se dos valores solicitados e dos tipos de curva a combinar, são traçados os gráficos do deslocamento, velocidade e aceleração do seguidor em função do ângulo de giro da came e o contorno da came (ver Fig. 4).

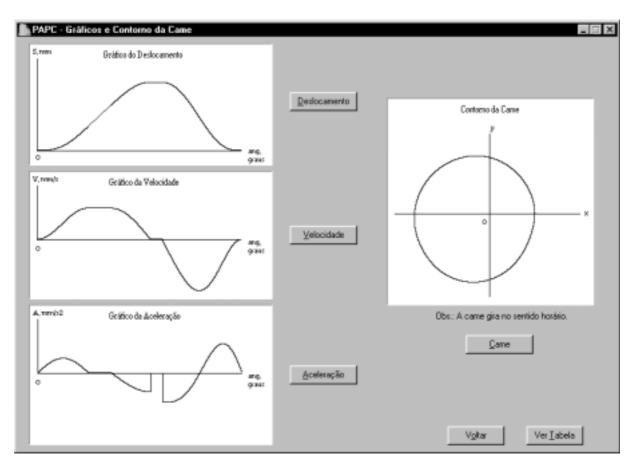


Figura 4. Valores da elevação do seguidor em função do ângulo da came

No caso do gráfico de deslocamento, o programa encarrega-se de combinar as curvas de forma a garantir uma perfeita concordância entre as mesmas.

O *jerk* ou segunda aceleração corresponde a taxa de variação da aceleração e é determinado pela terceira derivada do deslocamento. O *jerk*, então, é uma indicação da característica de impacto do carregamento e pode-se dizer que o impacto tem a segunda aceleração igual ao infinito. Assim, a partir do gráfico da aceleração é possível verificar se o movimento desejado para o seguidor irá resultar *jerk* infinito. Para tal, basta constatar a presença de segmentos de reta verticais no referido gráfico, os quais indicam que a aceleração está variando de um certo valor para outro instantaneamente, caracterizando o impacto. A partir do gráfico da aceleração da Fig. 4, então, conclui-se que o movimento escolhido para o seguidor irá resultar *jerk* infinito, mostrando-se, assim, indesejável.

Com relação ao contorno da came (ver Fig. 4), a interseção dos eixos indica o centro de rotação da mesma. Para a construção do contorno, utilizou-se, como base, as seguintes equações:

$$x = [R_b + S(\theta)] \cdot \cos\theta \tag{1}$$

$$y = [R_b + S(\theta)] \cdot \sin\theta \tag{2}$$

Ao iniciar o programa, o usuário primeiramente escolhe o tipo de movimento que irá caracterizar a elevação do seguidor. Como pode ser visto na Fig. 3, item 1, o usuário tem as opções de 1 a 9. Posteriormente, deve ser informado o ângulo de giro da came para cada trecho do movimento de elevação, conforme é mostrado na Fig. 3, item 2. Em seguida, pedese ao usuário que informe o ângulo durante o qual o seguidor irá repousar após sua elevação (ver Fig. 3, item 3). Caso não seja desejado o repouso, basta que se digite o valor 0 (zero) para tal ângulo. Feito isto, o usuário escolhe o tipo de movimento que irá caracterizar o retorno do seguidor (ver Fig. 3, item 4). Sendo o movimento do seguidor caracterizado por apenas uma ou duas curvas, para as demais curvas deve-se entrar com o valor 0 (zero) para o ângulo de rotação da came. Isto vale tanto para o movimento de descida quanto para o de subida (ver Fig. 3, item 5). É importante salientar que a soma dos ângulos de entrada deve ser igual a 360 graus, pois todo o estudo é feito para um único ciclo do movimento do seguidor.

PAPC - Entrada de Dados	□ [×
Para a elevação do seguidor, escolha a curva ou as curvas a combinar.	4. Para o retorno do seguidor, escolha a curva ou as curvas a combinar:
[1] cicléide [2] hamônico [3] polinômio de oitavo grau [4] meia-ciclóide + meio-hamônico [5] meio-hamônico + meia-ciclóide [6] meia-ciclóide + velocidade constante + meia-ciclóide [7] meia-ciclóide + velocidade constante + meio-hamônico	[1] ciclóide [2] harmônico [3] polinômio de citavo grau [4] meta-ciclóide + meto-harmônico [5] meto-harmônico + meta-ciclóide [6] meta-ciclóide + velocidade constante + meta-ciclóide [7] meta-ciclóide + velocidade constante + meta-ciclóide
[8] meio-hamônico + velocidade constante + meio-hamônico [9] meio-hamônico + velocidade constante + meia-ciclóide	(9) meio-hamônico + velocidade constante + meio-hamônico (9) meio-hamônico + velocidade constante + meio-ciclóide
Opção desejada 7	Opção desejada 3
2. Informe o ângulo de rotação (em graus) da came para a:	5. Informe o ângulo de rotação (em graus) da came para a:
primeira curva 90	primeira curva 140
segunda curva 40	segunda curva 0
terceira curva 70	terceira curva 0
 Com relação ao repouzo do seguidor depois de sua elevação, entre com a variação do ângulo da came (em graux) durante o mesmo: 	6. Valor da elevação total do seguidor (en mei)
	7. Valor do raio da circunferência de base da came (em mm) 30
Variação do ángulo 20	8. Valor do raio do rolete do seguidor (em mm)
	9. Valor do deslocamento do seguidor (em mm)
	Continuer Eecher

Figura 3. Tela de entrada de dados

Escolhidas as curvas características do movimento do seguidor, pede-se para que o usuário informe a elevação total do seguidor, o raio de base da came, o raio do rolete do seguidor e a medida do deslocamento do seguidor com relação à linha vertical que passa pelo centro de rotação da came (caso o seguidor seja deslocado), como pode ser visto na Fig. 3, itens 6, 7, 8 e 9, respectivamente. Sendo o seguidor radial, à tal medida deve ser atribuído o valor 0 (zero).

2.2 Gráficos e contorno da came

O projeto de uma came pode ser elaborado de duas formas (Norton, 1992) (Sandor & Erdman, 1984):

- (a) partindo-se do movimento desejado para o seguidor, projeta-se a came para dar este movimento;
- (b) partindo-se da forma da came, determina-se que características de deslocamento, velocidade e aceleração serão obtidas pelo seu contorno.

Com base no primeiro método de projeto, foi desenvolvido um programa em linguagem C⁺⁺ que permite a visualização do contorno da came de disco que irá garantir o movimento desejado para o seguidor. Para o movimento do seguidor, tanto na subida quanto na descida, o programa permite combinar trechos de curvas cicloidal, harmônica e polinomial de oitava ordem (Grosjean, 1991) (Kimbrell, 1991) (Mabie & Reinholtz, 1987) (Martin, 1982). Pode-se optar, também, por trechos de velocidade constante na elevação ou descida, assim como pelo repouso do seguidor ao final de sua elevação.

Além do contorno da came, é possível a visualização dos gráficos de deslocamento, velocidade e aceleração do seguidor. São impressos, também, valores destas grandezas, do raio de curvatura e do ângulo de pressão da came para ângulos de giro da mesma.

Nos anos recentes, poucos avanços foram verificados em programas voltados para o projeto de cames (Erdman, 1993). E embora outros programas existam, envolvendo a cinemática de cames, o programa desenvolvido apresenta vantagens, com relação aos mesmos, quanto à facilidade de entrada e saída de dados.

2. APRESENTAÇÃO DO PROGRAMA

Apresenta-se a seguir uma explanação das principais etapas do programa e a visualização das telas principais. Para tal, considera-se uma situação em que se deseja, para uma dada aplicação, que um seguidor radial de rolete apresente uma elevação total de 20 mm e seja acionado por uma came de disco de raio de base igual a 30 mm (ver Fig. 1). O movimento de elevação do seguidor deve ser caracterizado por trechos cicloidal, em 90 graus, de velocidade constante, em 40 graus, e harmônico, em 70 graus, nesta ordem. O seguidor deve repousar durante 20 graus e, então, retornar com movimento polinomial de oitava ordem em 140 graus. O raio do rolete do seguidor é de 5 mm.

2.1 Entrada de dados

Antes do usuário entrar com os dados pedidos, é apresentada ao mesmo uma tela inicial com o título do programa, conforme é mostrado na Fig. 2 .

Figura 2. Tela de apresentação do programa

DESENVOLVIMENTO DE UM PROGRAMA PARA DAR APOIO AO PROJETO DE CAMES

Eduardo Castelo Branco Porto Roberto de Araújo Bezerra

Universidade Federal do Ceará, Centro de Tecnologia, Departamento de Engenharia Mecânica, 60455-760, Fortaleza, CE, Brasil. E-mail: dem@ufc.br

Resumo

Neste trabalho é apresentado um programa em C⁺⁺ Builder, a partir do qual, são geradas as curvas de deslocamento, velocidade e aceleração do seguidor de uma came, assim como o respectivo contorno da mesma. O programa foi desenvolvido de tal forma que possibilita ao usuário a escolha dos tipos de curvas – cicloidal, harmônica e polinomial de oitava ordem – que caracterizarão os diagramas de movimento e a forma da came. De posse dos dados fornecidos pelo usuário, o perfil de deslocamento é traçado de tal forma que há uma perfeita concordância entre as curvas que o compõem, fornecendo-se ainda os gráficos da velocidade e aceleração do seguidor, o contorno da came e valores do raio de curvatura e do ângulo de pressão para ângulos da came durante um ciclo. Observou-se que o programa é de fácil utilização e o mesmo será usado como apoio didático.

Palavras-chave: Came, Ângulo de Pressão, Contorno da Came

1. DESENVOLVIMENTO DO TRABALHO

Uma came consiste em um membro de máquina de forma irregular o qual atua como uma peça motriz e imprime movimento a uma peça movida chamada seguidor (ver Fig. 1). As cames desempenham um papel muito importante na maquinaria moderna e são bastante utilizadas em motores de combustão interna, máquinas operatrizes, computadores mecânicos, instrumentos e muitas outras aplicações.

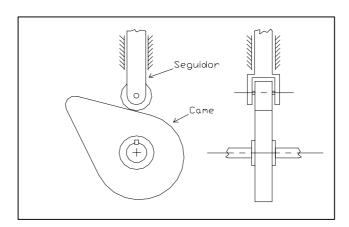


Figura 1. Came de disco com seguidor radial de rolete