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In this paper we would like to address the computational issues on the numerical
implementation of a micro-mechanical model based on the unit cell approach. As most of the
engineering applications are related with the plain weave configuration, we decide to focus
our attention in this type of fiber arrangement. Once the unit cell is selected and all geometric
characteristics an algorithm was developed to create a three dimensional representation of the
unit cell. The numerical implementation of such algorithm was fulfilled by using the
AutoLisp language which allowed us to model the unit cell into a Computer Aided Design
tool, namely Autodesk Mechanical Desktop software. Then, the unit cell geometry is
transferred to ANSYS. The numerical simulations are performed considering the waviness
ratio variation from 0.165 to 0.5. The data are compared against Whitcomb and Naik's results
with good agreement. Finally, some computational issues of the CAD and FEM compatibility
are address and discussed.

Key words: Textile composites, Computer modeling, Micro-mechanics analysis.
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Nowadays, unidirectional fibers composites are used in the aerospace industry for
secondary structures, such as engine casings, flaps and rudders, where their high strength-
weight ratio reduces the overall weight and hence the operating costs of the aircraft. Textile
and 3-D woven composites have great potential applications in the aerospace industry,
through cost savings due ease of handling, reduced scrap rate, and decreasing of problems of
cracks, such as damage and delamination.

In order to increase the use of 3-D woven composite materials in the aerospace industry, it
is needed to settle its physical properties. It is also important to know the composite behavior
under different applied loads of the wide range of structures available, and tailors the
composite to the structure requirements. Variables such as fiber type, dimensions and their
arrangement within the composite fabric need to be optimized for each different application.
The costs of preparing and analyzing the various possibilities of composite structures are
prohibitive. By using the new methodology proposed the number of tests need are
dramatically reduced. The designer can change the fiber components and/or matrix to search



for the best architecture of the composite for a specific application. Such task can be done
with a computational method without any cost and saving manpower and time. This new
computational method will be helpful for light airplanes industry, where the designer wants to
get smallest weight and reduced cost of material and fabrication.

This paper discusses a new methodology to calculate the mechanical proprieties of a plain
weave woven textile polymeric composite. It is applied the concept of tridimensional unit cell
(Whitcomb, 1991; Naik & Stembekar, 1992; Dasgupta HW� DO�, 1996) which represents the
smallest portion of the entire woven textile. The unit cell model is analyzed by applying the
finite element method to compute the effective elastic moduli. This approach differs from
classical ones (Ishikawa & Chou, 1982; Ishikawa & Chou, 1983; Cox & Flanagan, 1997) due
to the application of a numerical technique, which allows us to describe the stress and strain
distribution over the fibers and the matrix. Moreover, the effects of ondulation on the elastic
moduli and Poisson’s ratio can also be studied by applying the finite element formulation in
conjunction with the unit cell concept.

The computational aspects of finite element implementation and its pros and cons are also
addressed in this paper. As an engineering tool the new methodology can bring the followings
advantages:
- Flexibility to test various combinations of materials (fibers and matrix) to make a specific

composite material.
- Pre-determine the stress concentration factors on fibers, as a function of ondulation.
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In any weave, the warp yarns run along the length of the textile and the weft yarns run
across the width. The three main types of single layer weave geometry are plain, satin and
twill weave and in each case the warp and weft yarns are oriented at 0 and 900, respectively.

For plain weave, one warp alternatively crosses over and under consecutive weft yarn,
while the next warp yarn crosses under and over the wefts. This pattern is classified as 1/1 and
is illustrated in Fig.1-a.

For a satin weave textile, each warp yarn crosses at least tree weft yarns and interlaces
with fourth weft yarn, with a progression of interlacings of two to the left or right – a 3/1 4/1
or 7/1 weave. These geometries are also known as Crows Foot Satin, Five Harness and Eigth
Harness Satin and are shown in Fig.1-b,c,d.

The basket weave have two warp yarns interlaced with two weft yarns, it is classified as
2/2 and is illustrated in Fig.1-f. Twill weave is characterized by two or more warp yarns
crossed by a weft yarn, with a progression of interlacings of one weft yarn to the right or left
to form a distinctive diagonal line. Twill weave can be even-sided, i.e. the same amount of
warp and weft on each side of textile, or it may be warp- or weft-faced, with a predominance
of warp or weft yarns on the upper face. An even weave, with each warp crossing two wefts
and vice versa, is classified as a 2/2 twill and is show in Fig.1-e.
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In the Figure 1, the poligonal lines define the boundaries of unit cells. As we are interested
into plain weave composite materials we select the unit cell proposed  by Naik & Stembekar
(1992), see Figure 2.



a) Plain Weave

e) 2x2 Twill f) 2x2 Basket Weave

d) Eigth Harness Satin Weave

b) Crows Foot Satin Weave

c) Five Harness Satin Weave

Unit
Cell

Figure 1 – Unit Cells  for principals types of 2D textiles
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Figure 2 – The unit cell

In Figure 2 the following dimensions are defined: aw is the width of warp yarn, af is
the width of weft yarn, while gw is the  distance between two warp yarns. The distance
between two weft yarns is represented by gf, hw and hf are the  thicknesses of warp yarn and
weft yarn, respectively. Finally, the ondulation length of warp yarn, the ondulation length of
weft yarn and the lamina thickness are represented by uw,  uf and K.

By considering in Figure 3 the section DC as the mirror of section AB it is possible to
assume that section BC is also the mirror of section AD. In each section of unit cell it can be
identified three diferent regions.  The first region is the one where the fiber is straigth, the
second is where the fiber is curved, and the third one is where the matrix is located. To be
able to compute the unit cell dimensions Naik & Stembekar (1992) defined five sections a1,
a2, a3, a4 and a5 parallel to DC and five other sections b1, b2, b3, b4 and b5 parallel to AD. The
following equations are used to calculate a1 to a5 and b1 to b5:
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Figure 3: Plain weave unit cell representation

The fibers’ configuration in section DC is calculated with the hy1(y) and hy2(y) form
functions.The fibers’configuration on section AD is calculated with the hx1(x,y), hx2(x,y) and
hx3(x,y) functions. It is out of the scope of this work to reproduce  these form functions,  it is
shown the resultants figures 4a and 4b. For more details see Oliveira (1999).
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An algorithm was developed based on such form functions to construct the unit cell.
Before proceed it is needed to  establish some geometric definitions.  The yarn width on
longitudinal and transverse directions are represented by af and aw, while the free distance
between two yarns on longitudinal and transverse directions are given by gf and gw. The
weave yarn on longitudinal and transverse direction are represented by uf and uw. The
increment on the y direction is given by G\ and the yarn height on the longitudinal and
trnasverse directions are represented by hf and hw respectively.



The following steps are performed by the proposed algorithm:

*HW af, aw, gf, gw, uf, uw, hf, hw, ht, dy
&RPSXWH a1 through a5 and b1 through b5

'UDZ section D-C
)L[�WKH�RULJLQ (0,0) yi=0; hy1(yi)=0; hy2(yi)=hf

&RPSXWH k=af+gf

  x1=[1+sin{(b2-b3)*(Π/(uw+gf))}]
  hy1(b2)=x1*hf/2+ht/2-hf

,QFUHPHQW yi+1=yi+dy
,I yi+1<b1 WKHQ�GR
  hy1(yi)=0 hy2(yi)=ht/2
(QG�LI
'UDZ�OLQHV
  (yi,hy1(yi)) (yi+1,hy1(yi+1))
  (yi,hy2(yi)) (yi+1,hy2(yi+1))
,I b1<yi+1<b2 WKHQ�GR
  x1=[1+sin{(y-b3)*(∏/(uw+gf))}]
  hy1=x1*hf/2+ht/2-hf

  x2=[ht/2-hy1(b2)]*cos{(y-b1)*Π/uw}
  hy2(yi)=x2+hy1(b2)
(QG�LI
'UDZ�OLQHV
� (yi,hy1(yi)) (yi+1, hy1(yi+1))
  (yi, hy2(yi)) (yi+1,hy2(yi+1))
'R yi+1=b2

&RPSXWH hy1(yi)=hy2(yi)=hy1(b2)
'UDZ�OLQHV
  (yi+1,hy1(yi+1)) (b2,hy1(b2))

  (yi+1,hy2(yi+1)) (b2,hy2(b2))
,I b2<yi+1<b4 WKHQ�GR
  x1=[1+sin{(y-b3)*(∏/(uw+gf))}]
  hy1(yi)=x1*hf/2 + ht/2 –hf

(QG�LI
'UDZ�OLQH
� (yi, hy1(yi)) (yi+1, hy1(yi+1))
'R yi+1=b4

&RPSXWH hy2(yi)=-hy1(b2)
,I b4<yi+1<b5 then do
  x1=[1+sin{(y-b3)*(∏/(uw+gf))}]
  hy1(yi)=x1*hf/2 + ht/2 –hf

  x1=cos{(y-b5)*Π/uw}-hy1(b2)
  hy2(yi)=-[ht/2-hy1(b2)]*x1
(QG�LI
'UDZ�OLQHV
  (yi, hy1(yi)) (yi+1, hy1(yi+1))
  (b4, hy1(b2)) (yi+1 hy2(yi+1))
,I b5<yi+1< k WKHQ�GR
  hy1(yi)=ht/2
  hy2(yi)= - ht/2
(QG�LI
'UDZ�OLQH
  (yi, hy1(yi)) (yi+1, hy1(yi+1))
  (yi, hy2(yi)) (yi+1, hy2(yi+1))

The algorithm listed before was applied to create two codes in $X R/LVS Such codes
were named 7 [� VS DQG PD UL[ VS and they are used to generate the unit cell. Once such
unit cell was generated by the $X RG VN 0 F DQLFD ' VN RS 5� � the file is transferred to a
finite element code. Figures 5a and 5b show the unit cell before and after the transferring
procedure.

hf

hw

l1+l2

       a) CAD unit cell                              b) FEM mesh
Figure 5: a) Unit cell on Mechanical Desktop, b) Unit cell on ANSYS

To be able to validate the new computational methodology a set of unit cell
configurations are studied. In this study, we are able to calculate the elastic moduli for various



geometric parameters, distinct materials, and different volume fractions of fiber and matrix.
The geometric parameters are mainly concerned to the fiber ondulation and thickness, and the
overall laminate thickness.
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The results from the numerical simulation are compared against the data available in
the literature. Figures 6 through 8 show the elastic moduli as a function of the fiber
ondulation. In general, the results are in good agreement with the data available in the
literature. It is important to mention that these effective properties are calculated following the
methodology proposed by Oliveira (1999).
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Figure 6 –  Effective elastic moduli Ex, Ey Ez  versus waviness ratio
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Figure 7 –  Poisson’s ratios νxy, νyz, νxz   versus waviness ratio

Another advantage of the new methodology is the potentiality of studying the stress
concentration into the fibers by showing the effective stress distribution, represented by the
Von Mises stress, into the entire unit cell. By analyzing figures 9 and 10 it is possible to
observe the influence of ondulation on the stress concentration. Plain weave configurations
with waviness ratio bigger seems to be less influenced by stress concentrations, as the Von
Mises stresses are considerable lower in such type of composite.
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a)  warp b)  fi ll
Figure 9: Stress distribution on fiber for waviness ratio = 0.167

a)  warp b)  fi ll
Figure 10: Stress distribution on fiber for waviness ratio = 0.5
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The proposed algorithm seems to be a helpful tool to create numerical representations of
textile composites. By applying such type of algorithm is possible to create and analyze
different types of textile composites configurations. By using such algorithm the user is
allowed to identify possible locations of stress concentrations and correct such problems
before hand.
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