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Abstract

Shape memory and pseudoelastic effects may be modeled either by microscopic or macroscopic
point of view. Phenomenological aspects of SMA behavior are considered by constitutive models
which are formulated to describe these phenomena. The present contribution considers a new
one-dimensional constitutive model with internal constraint to describe SMA behavior. The
proposed theory contemplates four phases: three variants of martensite and an austenitic phase.
Two different elastic moduli for austenitic and martensitic phases and new constraints are also
conceived for a correct description of phenomena related to SMA. A numerical procedure is
developed and numerical results show that the proposed model is capable to describe shape
memory and pseudoelastic effects.
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1. INTRODUCTION

Shape memory alloys (SMAs) are a family of metals with the ability of changing shape
depending on their temperature. SMAs undergo thermoelastic martensitic transformations which
may be induced either by temperature or stress. When a specimen of SMA is stressed at a
constant higher temperature, inelastic deformation is observed above a critical stress. This
inelastic deformation, however, fully recovers during the subsequent unloading. The stress-stain
curve, which is the macroscopic manifestation of the deformation mechanism of the martensite,
forms a hysteresis loop. At a lower temperature, some amount of strain remains after complete
unloading. This residual strain may be recovered by heating the specimen. The first case is the
pseudoelastic effect, while the last is the shape memory effect (SME) or one way SME. These
effects are inter-related in the sense that, if the hysteresis cycle in the pseudoelastic case is not
completed when the applied stress is removed, then reversion of the residual martensite must be
induced upon heating, by employing the SME (Sun & Hwang, 1993). In the process of returning



to their remembered shape, these alloys can generate large forces which may be useful for
actuation (Rogers, 1995). Because of such remarkable properties, SMAs have found a number of
applications in engineering.

Metallurgical studies have revealed the microstructural aspects of the behavior of SMAs.
Basically, there are two possible phases on SMAs: austenite and martensite. In martensitic phase,
there are plates which may be internally twin-related. Hence, different deformation orientations
of crystallographic plates constitute what is known by martensitic variants. On SMAs there are
24 possible martensitic variants which are arranged in 6 plates groups with 4 plate variants per
group (Zhang et al., 1991). Schroeder & Wayman (1977) have shown that when a specimen is
deformed bellow a temperature where only martensitic phase is stable, with increasing stress,
only one of the 4 variants in a given plate group will begin to grow. This variant is the one that
has the largest partial shear stress. On the other hand, because the crystal structure of martensite
is less symmetric than the austenite, only a single variant is created on the reverse transformation
(Zhang et al., 1991). For one-dimensional cases, it is possible to consider only three variants of
martensite on SMAs: the twinned martensite (M), which appears with no stress field, and two
other martensitic phases (M+, M-), which are induced by positive and negative stress fields,
respectively.

Shape memory alloys may be modeled either by microscopic or macroscopic point of
view. Phenomenological aspects of SMA behavior are contemplated by constitutive models
which are formulated to describe these phenomena (Birman, 1997). The following classification
may be considered to the phenomenological theories: Polynomial models, models based on
plasticity, models with internal constraints and model with assumed phase transformation
kinetics.

Polynomial model was proposed by Falk (1980) and is based on the Devonshire theory
for temperature-induced first order phase transition combined with hysteresis. This is a one-
dimensional model that defines a polynomial free energy which describes pseudoelasticity and
shape memory in a very simple way.

Models based in plasticity exploit the well-established principles of the theory of
plasticity. Bertram (1982) proposes a three-dimensional model using the concepts of kinematics
and isotropic hardening. Mamiya and co-workers (Silva, 1995; Souza et al., 1998; Motta et al.,
1999) also presents models which are capable to describe shape memory and pseudoelastic
effects. Auricchio and co-workers also introduces models using these ideas. First, Auricchio &
Lubliner (1997) and Auricchio & Sacco (1997) present a one-dimensional model and then, it is
extrapolated to include the analysis in the set of three-dimensional media (Auricchio et al., 1997).

Models with assumed transformation kinetics consider that the phase transformation is
governed by a known function which is determined through the current values of stress and
temperature. The first model based in this formulation was proposed by Tanaka & Nagaki (1982)
which originates other models proposed by Liang & Rogers (1990), Brinson (1993), Boyd &
Lagoudas (1994), Ivshin & Pence (1994). Perhaps, these are the most popular models to describe
SMA behavior.

Models with internal constraints consider internal variables to describe the volumetric
fractions of the material phase and constraints, which establishes the form how the phases may
coexist. Fremond (1987) develops a three-dimensional model which considers three phases: two
variants of martensite and an austenitic phase. Limitations of this theory are discussed in Savi &
Braga (1993a). Abeyaratne et al. (1994) describes phase transformation kinetics with the aid of
some constraints based on thermodynamic admissibility rules. The model of Auricchio and co-
workers also may be included in this classification.



The present contribution considers a new one-dimensional constitutive model with internal
constraint to describe SMA behavior. The proposed theory is based on Fremond’s model and
includes four phases in the formulation: three variants of martensite and an austenitic phase. The
inclusion of twinned martensite allows one to describe a stable phase when the specimen is at a
lower temperature and free of stress. This is an improvement of the proposed model when
compared to the original Fremond’s model. Furthermore, two different elastic moduli for
austenitic and martensitic phases and new constraints are conceived in the formulation. A
numerical procedure is developed and numerical results show that the proposed model is capable
to describe shape memory and pseudoelastic effects.

2. CONSTITUTIVE MODEL

Fremond (1987) has proposed a three-dimensional model for the thermomechanical
response of SMA where martensitic transformations are described with the aid of two internal
variables. These variables represent volumetric fractions of two variants of martensite (M+ and
M-), and must satisfy constraints regarding the coexistence of three distinct phases, the third
being the parent austenitic phase (A). It has been noted (Savi & Braga, 1993a) that Fremond’s
original model can not present good results in three-dimensional problems, however, one-
dimensional results are qualitatively good. Here, an alternative one-dimensional model is
considered introducing a fourth variant of martensitic phase: twinned martensite.

SMA behavior can be characterized by the Helmholtz free energy, ψ, and the potential of
dissipation, φ. The thermodynamic state is completely defined by a finite number of state
variables: deformation, ε, temperature, T, the volumetric fractions of martensitic variants, β1 and
β2, which are associated with detwinned martensites (M+ and M-) and austenite (A), β3. The
fourth phase is associated with twinned martensite (M) and its volumetric fraction is β4. Each
phase have a free energy function as follows,
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where α, LM=LM(T) and LA=LA(T) are material parameters that describe the martensitic
transformation, EM and EA represents the elastic moduli for the martesitic and austenitic phases,
respectively; TM is a temperature below which the martensitic phase becomes stable in the
absence of stress; ρ is the density. A free energy for the mixture can be written as follows,
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where the volumetric fraction of the phases must satisfy constraints regarding the coexistence of
four distinct phases:

0≥iβ    (i=1,2,3,4) ;   14321 =+++ ββββ (6)

In the absence of strain, the detwinned martensites, M+ and M-, do not exist. In order to include
this physical aspect, an additional constraint must be written,

0if021 === εββ (7)

With these considerations, Ĵ  is the indicator function of the convex τ (Rockafellar, 1970):
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Using constraints (6), β4 can be eliminated and the free energy can be rewritten as:
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Now, J represents the indicator function of the tetrahedron π of the set (Figure 1),
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Figure 1 - Tetrahedron of the constraints π.



State equations can be obtained from the Helmholtz free energy as follows:
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where Bi are thermodynamic forces and σ represents the uniaxial stress; i∂  is the sub-differential

with respect to βi (Rockafellar, 1970). Lagrange multipliers offer a good alternative to represent
sub-differentials of the indicator function (Savi & Braga, 1993b). Considering a pseudo-potential
of dissipation of the following type,
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where η is a parameter associated with the internal dissipation of the material, it is possible to
write the following complementary equations:
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These equations form a complete set of constitutive equations. Since the pseudo-potential
of dissipation is convex, positive and vanishes at the origin, the Clausius-Duhen inequality
(Eringen, 1967), is automatically satisfied if the entropy is defined as Ts ∂−∂= /ψ .

Further, it is important to consider the definition of the parameters LM=LM(T) and
LA=LA(T), which is obtained assuming 01 =β�  and MER /αεε == in a critical temperature, TC,

below which there is no residual strain.  Hence, using these conditions in Equation (14), one
obtains the following expressions,
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In order to solve the governing equations, an algorithm based on the operator split
technique (Ortiz et al., 1983) are conceived. The procedure isolates the sub-differentials and uses



the implicit Euler’s method combined with an orthogonal projection (Savi & Braga, 1993b) to
evaluate evolution equations. Orthogonal projections guarantee that volumetric fractions of the
martensitic variants will obey the imposed constraints. In order to satisfy constraints expressed in
(6), values of volumetric fractions must stay inside or on the boundary of π, the tetrahedron
shown in Figure 1. For instance, if the values of a volumetric fraction calculated by (17) fall
outside the region π, the projection are prescribed in such a way that the result will be pulled to
the nearest point on the boundary of the tetrahedron.

3. NUMERICAL SIMULATIONS

In order to evaluate the response predicted by the proposed model, a SMA specimen
which properties are presented in Table 1, is subjected to a thermomechanical loading.

Table 1 - Mechanical properties.

EA  (GPa) EM  (GPa) α  (GPa) L  (MPa/°C) TM (0C)
67.0 26.3 0.228 61.6 18.4

At first, the pseudoelastic effect is contemplated regarding a SMA specimen subjected to
a mechanical loading with a constant temperature (T = 600C). The stress-strain curve for stress
and strain driving cases and different values of the parameter η, are presented in Figure 2. Notice
that the strain driving case predicts a softening behavior. Further, it should be pointed out that
there are two different elastic moduli for the austenitic and martensitic phase.
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Figure 2 - Pseudoelastic effect ( ATT >°= C 60 ). (a) η = 7 x 104 MPa.s; (b) η = 7 x 10-4 MPa.s

The shape memory effect is now contemplated regarding a thermomechanical loading
depicted in Figure 3a. Firstly, one conceives a constant temperature T = 400C, where the
martensitic phase is stable. The dissipation parameter is η = 7 x 104 MPa.s. After mechanical
loading-unloading process (Figure 3a), the specimen presents a residual strain that can be
eliminated by a subsequent thermal loading (Figure 3a). Notice that the stress-strain-temperature
curve (Figure 3b) represents the shape memory effect. Further, it is important to observe that
there is a stable phase, associated with the twinned martensite, when the specimen is free of
stress.
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Figure 3 - Shape Memory effect.

4. CONCLUSIONS

The present contribution proposes a new one-dimensional constitutive model with internal
constraint to describe SMA behavior. The proposed theory considers the twinned martensite in
the formulation and, as a consequence, there is a stable phase when the material is free of stress at
low temperatures. The consideration of different elastic moduli for austenite and martensite is
another improvement of the theory. The inclusion of the constraint which establishes that the
detwinned martensites does not exist in the absence of strain, permits to describe thermoelasticity
behavior. A numerical procedure is developed and numerical results show that the proposed
model are capable to describe shape memory and pseudoelastic effects. Some features are still
needed to be contemplated in the proposed model and one could mention the elimination of the
softening behavior for strain driving case and also the internal loops observed during cyclic loads
associated with incomplete phase transformations.
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