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            ABSTRACT 

A methodology initially proposed for authomatic mesh generation of triangular and quadrilateral 
finite element discretizations in linear two-dimension  problems is now extended to material 
nonlinear analysis. The technique, which is based on a h-adaptive process, is capable of 
achieving  a specified discretization density using a powerful mesh generator. The element 
solutions at the nodes are obtained through a general stress recovery procedure  employing an a 
posteriori error estimator. The constitutive equation  is approached in the formulation using a 
flow theory to describe the elasto-plastic material behavior. In this study the von Mises condition 
is employed for the state of multiaxial stress corresponding to the start of plastic flow, the 
normality condition furnishes a flow rule in the plastic strain increments subsequent to yielding 
and the kinematic hardening is assumed as hardening rule.  The adaptive procedure is based on 
the complete mesh regeneration and specific mesh requirements (boundary conditions, geometry 
definitions and space node function), and aims for an optimality condition with the least number 
of elements that yields  an uniform error distribution in all elements. In the stress recovery 
process  the nodal values are assumed to belong to a polinomial expansion defined over patches 
of  elements adjoining a particular assembly node considered. The nodal point parameters, at 
each element, are obtained using a least square fit of superconvergent sampling points existing in 
the patch. The material uniaxial elasto-plastic constitutive behavior  is represented using 
overlays, defined over small strain increments, allowing for the representation of the material 
kinematic hardening behavior beyond the classical bilinear relation. The procedure error 
estimation is obtained from differences between the post-processed stress gradients and those 
from the finite element solutions. The energy error norm associated with stress field diferences 
and the finite element strain energy gives an effective error estimate, used for comparison with 
the process tolerance. Evaluation of  the proposed technique is presented through numerical 
sampling analyses to illustrate its applicability in the improvement of the solution accurance of 
general two-dimension finite element model solutions. 
 
 
 INTRODUCTION 
  
The success of the finite element method in numerical analysis is based  largely on the basic 
finite element procedures used, namely, the formulation of the  problem in variational or 
weighted residual form, the finite element discretization of this formulation, and the effective 



solution of the resulting finite element equations. These  basic steps are the same whichever 
problem is considered and provide a general  frame-work and a quite natural approach to 
engineering analysis. Besides being the  most general analysis tool available today, the method 
may still require from the analyst a broad knowledge and some experience in using the numerical 
procedures employed, to perform a reliable modelling analysis of practical applications. 
 In this context, capabilities such solution error estimates, combined with an effective mesh 
adaptive technique, have been added to extend the method numerical  efficiency. For a given 
mesh, error estimates current available in the literature are classified in two types: residual 
estimators and flux projection estimators. In the  first, the solution error is evaluated over the 
elements or mesh subdomains by solving a local boundary value problem using samplings of the 
differential equation residuals  in each element domain and the residual in the stress components 
sampled on the  boundary of each element (Kelly, Graco, et. al.-83). In the second type, the error 
is evaluated from the stress component fields post-processed using some projection technique 
(Zhu, Zienkiewicz-87; Ladeveze, Coffignal & Pelle-86; Ortiz, Quigley-91), such the least square 
method. In Ref. (Tetambe, Saigal-94), a comparative study for five flux projection error 
estimators in elasto-plastic analysis of two-dimension plane strain and axisymmetric solids, 
undergoing large deformations, is presented. In this study no mesh refinement is employed and it 
is shown that error estimators based on the energy rate and on the L2-norm of the incremental 
strains accurately predicts  the region of maximum error. From all error estimators tested in the 
analyses considered, the L2-norm of the incremented strains gave the most conservative estimate 
of error. 
 In this paper the h-adaptive and mesh generation procedures, presented in Ref. [Almeida-94] for 
the finite element  analysis of two-dimension isotropic linear-elastic problems, are extended to 
account for material nonlinear effects. The material constitutive relation for the uniaxial stress-
strain is represented by a multi-linear idealized model using the overlay model procedures 
reported in Refs. (Nayak, Zienkiewicz-72; Zienkiewicz, Villiapan, King-69; Owen, Prakash, 
Zienkiewicz-74).  In this material modelling technique, the multi-linear relation is replaced by 
the  superposition of a number of elasto-perfectly plastic material models. This  technique has 
been proven attractive on representing the elasto-plastic behavior of  materials undergoing 
cyclic-loadings. It is worthy a notice that that even under complex loading conditions, the 
material model represented by overlays gives accurate numerical solution responses in 
representing the  Bauschinger and the strain softening effects. In the following sections a brief  
outline of the finite element steps in the elasto-plastic analysis, the details of the  overlay model, 
a review of the adaptive procedure based on an a posteriori error estimator and the conclusions 
founded from sample analysis results are presented, indicating the  applicability of the proposed 
methodology to general structure analyses. 
  
 
THE ELASTO-PLASTIC ANALYSIS 
  
In finite element analysis the basic step is the unique representation,  within an element (i), of the 
unknown displacement vector 
 

(i)(i)(i) v̂ N  v =                                           (1) 
 

in terms of the element nodal displacement vector (i)v̂  and the displacement transformation 



matix  (i)N  [Bathe-82], which depends on the  spatial coordinates and the interpolation function 
used in the problem discretization. At any point of the problem domain, represented by  n  
elements, the strains can be then obtained from 
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where matrices (i)B  are generally obtained from the shape functions and  their derivatives. From 
linear elasticity the proportional constitutive law for an  initially strained material, with initial 
strains oε  and initial stresses 0σ , gives the relation 

 oo ) - (   σ εεσ += D                                               (3) 

 in which D is the elasticity matrix. If nodal forces acting on the structure are listed  in a vector R 
and the stresses at any point are as in eq. (3), then for equilibrium it is required that 

dV.) - (  v̂ dV o
T

o

V

TT

V

εσ DBB -R DBB ∫∫ =                                   (4)  

In elasto-plasticity eq. (3) does not hold to represented the full constitutive law. However, for the 
case of small strain analysis, the strain-displacement relationship remaining linear, the problem 
can be solved without complete reformulation. 
Plastic deformations are characterized by an irreversible straining and begins once  certain level 
of stresses has occured. This level is governed by a yield condition function 

0 ) ,F( =κσ                                                (5) 

where κ  is a state variable which depends on the plastic strain vector  .pε   Strain state 

increments in the material may be decomposed into elastic and plastic components, in the form 
.       pe εεε δδδ +=                                            (6) 

In equation (6) we use the following definition 
σ ε   -1

e δδ D=                                              (7) 

according to eq. (3), and the plastic strain increments being associated gradients of the yielding 
potential by to the  following flow rule  

ijijpij q  F/   λσλεδ =∂∂=                                         (8) 

in which λ  is a scalar to be determined. Since during plastic deformations the stresses should 
remain on the yield surface, i.e. δF= 0, we also have 

0  -  p
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where . p pijij ε∂=  Using eqs. (7) to (9), the  scalar λ  is evaluated, 

).    (    TTT Dqqqp/Dq += εεδλ                                      (10) 
Then substituting from (8) and (10) into (9) one obtains 
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where the matrix 
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represents the instantaneous elastic-plastic stress-strain law. This constitutive law depends on the 
yield function F used. In this work the von Mises yield criterion with isotropic hardening was 
employed. 
To solve the nonlinear equilibrium equation resulting from (4), an iterative  procedure must be 
employed with a series of elastic solutions being performed until all the problem nonlinear 



conditions are satisfied. In a linear analysis where the  resulting stresses are constrained to satisfy 
the yield criterion, the equilibrium equation in (4) will not be satisfied and the residual forces 
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will arise. In eq. (13) σ  is a vector containing the actual stress components obtained from the 
stress level reached as governed by the yield criterion. Variations of the out-of-balance force, 

*, Rδ due to  changes v̂ δ  in the displacement vector leads to the problem tangent stiffness 
matrix 
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The solution is then obtained by starting from a trial solution, calculating the  residuals by means 
of (13) and then obtaining a corrected solution displacement vector, at iteration (n + 1), in the 
form  

.*   ˆ  ˆ -1
Tn1n RKvv +=+                                         (15) 

Since the constitutive law in (11) is expressed incrementally the process is repeated for small 
increments, starting from previously established conditions until further changes in 
displacements are  sufficiently small. 
  
 
THE OVERLAY MODEL 
  
The elasto-plastic solution method outlined in the previous section provides  adequate numerical 
results if no load reversal occurs or, for increasing  loads, the uniform expansion of the yielding  
surface is assumed to occur in the analysis.   Nevertheless, it does not simulate the Bauschinger 
effect on reverse loading, and  the initial yield value on reversal increases with the amount of 
straining  on the previous loading. As indicated by analytical modelling approaches  available in 
the literature, Refs. (Kröener-61; Hutchinson-64), the Bauschinger effect can be simulated by 
considering the continuum composed of individual grains each possessing individual  properties. 
Thus, it is quite natural to conceive the structure as an assembly of  element models with 
different material properties assigned to each, or to the  Gaussian points, as in the isoparametric 
element discretization. Although convenient, this procedure would not be practical to use 
because the internal stress and displacement distribution would be meaningless, being dependent 
on the  prescribed distribution of the material properties. To overcome this difficulty the overlay 
model has been proposed [Owen, et. al-74]. By this modelling technique the material is assumed 
to be  composed of several layers of overlays. Each overlay may have different material 
properties and thickness, with an elastic-perfectly plastic behavior  being assigned. Nodes in 
each overlay are coincidental and the same strain pattern is produced in each overlay. As a result, 
different stress fields are produced in each overlay, which contribute to the total stress 
distribution 
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suitable  weighted by the overlay thickness .iξ   in eq. (16) the condition ∑
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This material model has the advantage of providing stress and  displacement distributions that 



are physically meaningful. These stresses may be recognized as the continuum average of the 
stresses in the material individual grains.  
Considering the constitutive linear elastic relation in each overlay to be equal to the material 
Young's Module E1 and the slopes in the multi-linear model as E2, E3, ..., the overlay thicknesses 
are evaluated by improsing the conditions in eq.  (16) to " sampling points from the uniaxial 
stress-strain relation, resulting in  

         to1  ifor       ,E/)E - (E  11iii "==ξ +                                 (17) 
Although being originally developed for plane stress state representations, the overlay technique 
is readily extensible to three-dimension stress states and, in this case, the overlay thicknesses 
become weight parameters. Negative values for these parameters  allows the technique to 
simulate materials with strain-softening effects, Ref. (Owen, Prakash, Zienkiewicz-74). 
 
 
ADAPTIVITY AND MESH GENERATION 
  
In elasto-plastic analyses, lacking an exact solution for comparison with a particular finite 
element solution requires, at a certain loading, approximation of the  numerical results to 
evaluate the solution error. Numerical experiments with various solution error procedures 
indicates the energy norm error measure as one of the simplest but reliable to  use error estimate, 
in the evaluation of a particular problem discretization performance, Ref. [5].  For a certain 
mesh, the energy error norm is obtained from approximations of the stress field in the  error 
evaluation at each element level, based on differences between numerical results and the 
approximation fields, as detailed in Refs. (Zhu, Zienkiewicz-87; Zienkiewicz, Zhu-91; 
Zienkiewicz, Zhu-92). This technique has been implemented  and tested in two-dimension 
applications presenting severe stress singularities (Almeida-94; Almeida & Santana-93). It was 
shown that with the use of triangular and quadrilateral isoparametric finite element 
discretizations a great improvement in the solution efficiency is  obtained when quadratic 
elements were used versus linear interpolation elements. Thus, the methodology initially 
presented for linear applications, and detailed in Ref. (Almeida-94), was extended for material 
nonlinear analyses, and is based on the following steps: 
•  after numerical convergence has been achieved, at a certain load step, an a posteriori solution 

error estimation is evaluated from differences between post-processed stress gradients and 
those from the finite element solutions.  The energy error norm associated with stress field 
differences and the finite element predicted strain energy gives an effective error estimate 
used for comparison with the process tolerance; 

•  if the convergence condition is not satisfied, an h-adaptive process is employed, based on a 
complete mesh regeneration, guided by specified mesh requirements such as boundary 
conditions, geometry definitions, and space node functions to achieve an optimal refinement. 
The optimality condition used requires the mesh refinement with the least number of elements 
that yields a uniform strain energy norm error distribution in all elements. This is generally 
referred as Zienkiewicz-Zhu condition, described in Ref. (Zienkiewicz, Zhu-91); 

•  to proceed with the analysis, a general stress recovery is required to obtain the element 
solution at the new node positions. In this procedure, the nodal values are assumed to belong 
to a polynomial expansion of the same complete order in the interpolation  function basis 
used, which is valid over all elements adjoining a node. A least-square fit of superconvergent 
sampling points existing in the path is used to obtain the recovered nodal point parameters for 



each element. These parameters, stresses and displacements, are averaged to all elements 
adjoining the node of interest. 

 
The numerical solution continues for increasing load steps, using the new discretization mesh 
and solutions for evaluation of the equilibrium condition in (4). 
 
SAMPLE ANALYSIS 
  
The foregoing enhancements for the material nonlinear representation in two-dimension 
continuum mechanics problems have been implemented to the adaptivity procedures presented 
earlier. Although the prime motivation for these enhancements is the better description of the 
material behavior under cyclic loading, the analysis that follows provides an assessment of the 
model for results in conventional plasticity analysis with monotonically inceasing loads. In such 
situations isotropic hardening plasticity gives accurate results. 

Figure 1 - Short Cantilever Beam Under Transverse Uniform Loading. 
Initial Finite Element Meshes Used. 

  
The first problem concerns the plane strain behavior of a short cantilever beam, subjected to 
uniform transverse loading, linearly incremented in 20 time steps, as shown in Fig. 1. Figure 1 
also presents the initial triangular (6 nodes) and quadrilateral (9 nodes) quadratic isoparametric 
element meshes employed. Five elastic perfectly-plastic overlays were used to represent the 
material stress-strain relationship. Computed weighting parameters and yielding stress values are 
indicated in Fig. 2. In both finite element discretization analyses a 6% energy error criteria for 
mesh reformation was required and a .1% converge rate was used for the iterative procedure 
during evaluation of the out-of-balance load R*, defined in eq. (13). The energy error norms 
obtained from the finite element solution and the number of degrees-of-freedom required in each 
solution step are shown in Tables 1a and 1b, for both discretization models. In the first load step 
of each analysis, two mesh refinement steps were required due to the very crude discretization 



initially used, yielding to large energy error norm solutions. These results are, in essence, the 
same obtained in previous linear analyses in Ref. (Almeida-94), because at this load step the 
material is still  

 

 
 

Figure 2 - Material Stress-strain  Curve  Approximation. 
Parameters Used in the Overlay Representation. 

 

 
Figure 3 - Final  Obtained Meshes with Triangular and Quadrilateral 

 Finite Element Models Used. 
 
 
 



elastic. As the analysis proceed, a gradual increasing in the energy norm error is observed but no 
need of refinements is required until the 7th and the 6th load steps were reached for the 
triangular e quadrilateral meshes, respectively. At these load steps, only one cycle of refinement 
was then required for convergence. Further, as plasticity region advances over the elements, 
larger values for the energy error norm requires frequent cycles of refinements (steps 11 to 20). 
Figure 3 despicts the obtained final meshes in both analyses; the indicated areas correspond to 
the elements in which the material yielding conditions have been satisfied in at least one 
Graussian integration point. The displacement-load curves displayed in Fig. 4 are concerned with 
four quatrilateral finite element analyses. The vertical displacement solution v for the node 
located at the structure upper right corner is obtained from the full mesh refinement procedure 
proposed in this work and compared to the solutions given by discretizations obtained at the first 
step of mesh refinement. These mesh discretizations were kept constant throughout the analyses 
with energy error norms equal to 19.9%, 11.1% and 5.62%, see Table 1b step 1. From the results 
it may be observed that obtained errors in the displacement solutions at the latest steps are larger  
than at the begining of analysis when almost the entire structure is still under the linear elastic 
behavior. Moreover, for the entire range of loading considered, the results obtained with the 
initially proposed mesh are inadequate. 

 
 

 
 

Figure 4 - Displacement-load Relations for the Analyses with Quadrilateral Elements, 
Using Different Mesh Discretizations, Obtained in the 

First  Step of the h-Adaptive Procedure 
 
 
 



 
Table I - Energy  Error Norms and Number of Degrees-of-freedom Required at Each Load Step 
 

In the second problem the doubly-cracked square plate reported in Ref. (Almeida–94) and shown 
in Fig. 5 was considered.  The uniform loading was linearly increased in 12 time steps, bringing 
the material to the behavior beyond its elastic limit.  As in linear analysis, only one fourth of the 
plate was represented in the model analyses with four and eight element discretizations in the 
initial quadrilateral and triangular meshes, respectively.  In both analyses only quadratic 
elements were considered with nine nodes for the quadrilateral mesh and six nodes for the 
triangular.  As in the first problem, the material constitutive law employed is as shown in Fig. 2,  
using the overlay modelling technique.  A 6% energy error norm criteria for mesh updating was 
required with 0.1% convergence rate for evaluation of the out-of-balance loading, during 
iterations.  Obtained error norms from the finite element solutions are presented in Tables 2a  
and 2b for the element discretizations employed.  As in the short cantilever beam problem, two 
mesh refinement steps were required due to the proposed crude initial meshes.  The energy error 
norms gradually increase with loading increments, not requiring requirements until steps 5 and 6 
for the triangular and quadrilateral meshes, respectively.  At these steps one cycles of refinement 
was required for convergence.  Larger values of the energy error norms require frequent cycles 
of refinements, as the plastic region advances over the elements. Final obtained meshes are 
shown in Figure 5;  in dashed area is  represented the elements with the stress state fulfilling the 
yielding condition, in eq. (5). 



  
 

Figure 5 - Doubly-notched Plate Under Uniaxial Loading 
Initial Finite Element Meshes Used. 

 
 
Table II - Energy Error Norms and Number of Degrees-of-freedom Required at each Step for the 

Doubly-cracked Plate Analyses. 
 

 
 
 



 

 
Figure 6 - Final Obtained Meshes with Triangular and Quadrilateral Finite 

 Element Models Used in the Second Exemple. 
 
 
 
CONCLUSIONS 
  
Some recent developments with a fully automated h-adaptive strategy for an efficient two-
dimensional finite element analysis has been presented and demonstrated with applications in 
two sampling  problems presenting stress singularities. The use of the overlay concept to 
represent element constitutive behavior beyond yielding in a multi-linear relationship is  
physically considered as representing the action of individual grains. Moreover,  the procedure 
can be treated as a mathematical artifice and, as stated,  extended to general three dimension 
stress state representations. Moreover, the use of negative overlay weights may allow to simulate 
material strain-softening effects. As implemented the overall strategy provides an adequate basis 
for the formulation of a general h-p adaptive procedure. 
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