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Abstract
In this paper, we present a study on the height of maximum speed-up, l, for flows over low
hills under neutral atmosphere. We consider the four most well known expressions to
calculate l, due to Jackson and Hunt (JH), Jensen (JEN), Claussen (CL) and Beljaars and
Taylor (BT). In the analysis, we present a formal demonstration of the fact that l can, in fact,
be calculated as the inner layer depth, where inertia and turbulent forces balance. The need for
such a demonstration has received little attention by researchers over the years. We also
propose a new value for the constant in CL’s expression and confirm that JEN’s expression
gives better results than JH’s one. Regarding this fact, we suggest that JH’s expression should
definitively be substituted by JEN’s or CL’s with the proposed constant.
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layers.

1. INTRODUCTION

There has been a remarkable interest over the years on estimating the height above the
ground where wind speed-up is a maximum in the atmospheric boundary layer (ABL) over
low hills. The idea is strongly appealing for wind power specialists and for those who want to
calculate wind loads on various kinds of structures.

Many expressions to calculate this height, often denoted by l, have been proposed since
the idea appeared. The most well known expressions come from the pioneering work of
Jackson and Hunt (1975) and from later works by Jensen et al., (1984) Claussen (1988) and
Beljaars and Taylor (1989) (hereafter JH, JEN, CL and BT, respectively). The expressions
obtained by these authors, respectively, read
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where Lh is the half-length of the hill, defined following JH as ‘the distance from the hilltop to
the upstream point where the elevation is half its maximum’; z0 is the roughness length and k
is the von Karman’s constant, adopted as 0.39, as suggested by a recent work by Frenzen and
Voguel (1995). A comparative study of the relative merits of the four expressions can be
found in Walmsley and Taylor (1996). If we divide the four expressions by z0 and rewrite the
constants in (3) and (4) as 2
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n kC , respectively, we get:

+++ κ= h
2L2)ln(ll , (5)

+++ κ= h
22 L2)(ln ll , (6)

+++ κ= h
2

1 LC)ln(ll , (7)
+++ κ= h

2
n

n LC)(ln ll , (8)

where 0zll ≡+  and 0zLL ≡+ . Based on only one experimental result, CL suggests that

09.0k)x(C 2
1 = , which means that 59.0C1 =  for κ=0.39. After comparison with model

results, BT suggests that n=1.4 to 1.6, depending on the turbulence closure assumed, and that
26.0)x(C 2

n =κ  to 0.55 (also depending on closure), which yields 62.3Cn =  to 1.71.
In his work, JH divides the ABL in two regions. In the first, more external region, the

effects of inertia dominate and in the second, more internal, turbulent forces have to be
considered too. In the same work, they identify l as the depth of the inner layer. Although this
idea was adopted in most of the works that followed, none of the works we had access to
demonstrate that l, calculated as the inner layer depth (where inertia and turbulent forces
balance), was also the height of maximum speed-up (hereafter called lmax, to avoid confusion).
All works considered restricted themselves to verify that the field data for lmax confirmed the
proposed expressions for l. In a review paper, Taylor et al. (1987) state that ‘l is probably best
considered as a scale height for the inner layer rather than the height at which something
specific occurs.’ The authors, however, follow JH’s hypothesis and compared the results of
their expression for l with field data for lmax. In a more recent paper, Beljaars and Taylor
(1989) say that ‘since the inner-layer depth, l, has been introduced by means of order of
magnitude considerations, its practical definitions is somewhat arbitrary’. Apart from that, a
lot of discussion is found in the literature about the relative merits of expressions (1)-(3). The
following points where summarised from Walmsley and Taylor (1996):

•  independent of which expression is used, l is always considered to be the height of
maximum speed-up;

•  values predicted by the JH expression are too high when compared to field results and no
reasonable adjustment of z0 can fix the problem;

•  values predicted by the JEN expression agree very well with observed values in the whole
range of variation of 0h zL ;

•  CL’s expression gives better agreement to observed values than JEN’s at the specific
value of 0h zL  with which it was calibrated;

•  Model results suggest a value for n between 1 and 2 in the BT expression;
•  More observational data is required to solve definitively the question.

In this work, we present a new deduction for the JEN’s expression obtained through
slightly modified order of magnitude arguments applied to the hypothesis that l is the height
where inertia and turbulence forces balance in the ABL. To our present knowledge, this



deduction is both new and simpler than the previous ones. We also present, for the first time,
a formal demonstration that l, calculated this way is, in fact, the height of maximum speed-up.
We compare our results to JH’s, CL’s and observational data showing that JEN’s expression
agrees better with observational data than JH’s and that the constant in CL’s expression can
be calibrated to agree well with field data. We also ratify Walmsley and Taylor’s conclusion
that more observation is needed at some ranges of the parameter 0h zL .

2. DEFINITIONS

Consider one isolated 2D hill in the middle of an otherwise flat terrain, of constant
roughness and under a neutrally stratified atmosphere. For our purposes, we consider a hill to
be a topographical variation with characteristic length about 5 Km and height less than 500m.
A hill is called low when it slope never exceeds 20o. Fig. 1 illustrates the main features of a
typical low hill. The vertical co-ordinate z, is defined as the height above the local terrain
rather than the vertical height above sea level.

Fig.1. Definitions of h, Lh, ∆u, u0 and z.

In the case under study, we assume that the vertical profile of the horizontal mean wind is
essentially logarithmic far from the hill. Hereafter we refer to this profile as )z(u 0 , and the

location upwind of the hilltop (HT) where it is found as the reference site (RS). The RS
profile suffers the influence of the hill in such a way that it is modified by a speed-up quantity

)z,x(u∆  and becomes )z,x(u  at a given point over the hill. Thus:
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where u∆ is positive at HT, because the flow is accelerated to satisfy the continuity equation.
If we divide the speed-up by the RS velocity, we have the relative speed-up, S∆ :
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The height where u∆  is maximum, lmax, is defined as
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Conversely, we can write ),x(uu maxmax l∆≡∆ .
In the next section, we develop an order of magnitude analysis of the governing equations

to obtain an expression for lmax. We also establish the co-ordinate system most appropriate for
our purposes.

3. ORDER OF MAGNITUDE ANALYSIS

To obtain the expression for the height of maximum speed-up we proceed in two steps:
first we obtain the expression for the inner layer depth, l, and second, we show that this depth
is really the maximum speed-up height, lmax. In order to establish a co-ordinate system
suitable for the task, we follow the work of Kaimal and Finnigan (1994), which recommends
the use of the streamline co-ordinates for distorted flows of this type. The work of Finnigan
(1983) gives the mean mass conservation and the mean x-momentum equations for 2D flows
in this system, respectively, as

0
z

w

x

u =
∂
∂+

∂
∂

, (12)

x
0

x
a

222

V
T

T
g

R

'w'u
2

L

'w'u

z

'w'u

x

'u

x

p1

x

u
u +−+−+

∂
∂−

∂
∂−

∂
∂

ρ
−=

∂
∂

. (13)

In eqs. (12) and (13), x is the direction parallel to the streamlines and u  and u’ are the
mean and turbulent velocities in this direction, respectively. The direction normal to the
streamlines is z, and w  and w’ are the corresponding velocities. The thermodynamic mean
pressure is denoted by p , the mean density by ρ , the mean temperature by T , the reference

mean temperature by 0T , the x-component gravity acceleration by gx and the x-component

mean viscous force by Vx. R and La are flow length scales and they are related to the mean
variables through ( )zuuR ∂∂+Ω=  and ( )zuuLa ∂∂= , where Ω is the mean vorticity

component in the z direction in the original Cartesian co-ordinate system.
Supposing the existence of a region where inertia and turbulence terms balance we write
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To evaluate expression (14) we assume that hLx ∼  and that inertia and turbulence terms

balance in the region where lz ∼ . We also assume that 0uu ∼  which means that uu <<∆ .

Finally, we assume that *u'w'u ∼∼ , where *u  is the friction velocity. With these
assumptions we have
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To transform this order of magnitude relation in an equality, we introduce an unknown

function )x(C2  of order one, such that ll /u)x(CL)(u 2
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This relation is presumably valid for all incident wind profiles. For a logarithmic profile

of the form )zln()/1(uu 0*0 lκ= , we can write )z/(lnCL 0
22
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This equation is identical to that of JEN except for the constant C2, to be determined. In
the mainframe of an order of magnitude analysis, this can only be accomplished through a
comparison with observational data. We do that in the next section. First, however, we shall
show that l, calculated from (17), is indeed the maximum speed-up height.

Consider the mass conservation and x-momentum equations in Cartesian co-ordinates.
They are essentially the same as eqs. (12) and (13), except for the curvature terms containing
R and La in eq. (13). Returning to the hypothesis that the inertia and turbulence terms balance
in the inner region, we have
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As we now want to obtain results about the height where u∆  is maximum, we substitute
uuu 0 ∆+=  into (18) to obtain
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after considering that 0x)z(u 0 =∂∂  and that uu <<∆ . If we are to obtain the height where

u∆  is maximum, we must impose that 0zu =∂∆∂  at maxhzz l+=  (in Cartesian co-
ordinates). Differentiating (19) with respect to z allows us to substitute this condition in the
resulting equation and find
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at maxhzz l+= . Substituting for the orders of the individual terms yields
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The magnitude order for w can be obtained from the mass conservation equation as

hmaxh0 L)z(uw l+∼ . Substituting this expression on eq. (21), multiplying by 2
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and introducing a function )x(C3  to obtain an equality, we get
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Recalling that uu 0 ∆>>  and returning to the streamline co-ordinate system, where maxhz l+
is simply equal to l, we finally get
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Eq. (23) is identical to eq. (16), except for the constant to be determined. As the constant
value is entirely arbitrary, we can set )x(C)x(C 32 = , therefore proving that l= lmax, indeed. In

the next item, we calculate the value of )x(C2  through comparison with field data and test the
overall capability of expression (17).

4. COMPARISON WITH OBSERVATIONAL DATA

Many field studies provide the observational data needed for our purposes. The most
popular data can be obtained from the work of Taylor et al. (1987) and Copin et al. (1994).
The available measurements for l are represented in fig. (2) together with the results of eqs.
(17), (5), (6) and (7).

                                      (2.a)                                                                  (2.b)

Fig.2. Non-dimensional height of maximum speed-up.
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Equation (17) was tested for some values of )x(C2  and we verified that good agreement

is obtained with 0.2)x(C2 =  for the HT. All measurements were made at the HT and,

therefore, it was not possible to assess the x dependence of )x(C2 . The result, however,

confirms JEN’s equation, expression (6). We also obtained the best fit value of 42.2)x(C2 = ,
for eq. (17), which has never been proposed before. We believe, however, that more field data
is necessary before we can state that this value is definitive. Our tests also showed that the
agreement between observation and JH’s expression, eq. (5), is acceptable only for the
Bungendore Ridge (BR) results (Bradley, 1983), not represented in fig. (2.b). This conclusion
is confirmed by other workers, e.g. Mickle et al. (1988) and Taylor and Walmesley (1996).
The BR results deserve some attention, nevertheless.

According to Taylor et al. (1987), the z0 value varied between 0.002 and 0.005 m during
the BR experiment. Those limits, with l estimated as 5m, (following Taylor et al., 1987)
correspond to the values that were well represented by eq. (5). In addition, the speed-up
vertical profile presented a very broad maximum, from the first measurement point up to the
height of 8m. The point represented in figs. (2.a) and (2.b) were calculated supposing that l=1
m and adopting z0=0.0035 m as an average value. This point agrees very well with eq. (17).

Fig. (2.b) shows a plot of the field data against eqs. (5) and (7), for the same experimental
data used on fig. (2.a). Agreement is good in this case too, except in the BR case. Comparison
of eqs. (5) and (7) shows that CL’s expression differs from JH’s only by a constant. In fact,
before CL proposed his expression, Teunissen et al. (1987) had suggested that a different
value for the constant could correct its prediction ability. CL proposed 59.0C1 =  based on
one field result (210o wind direction case of ASK). Based on fig. (2.b), we propose a value of

41.0C1 = , which seems to fit the observational data better, as a whole. To our present
knowledge, this result is also new.

5. CONCLUSIONS

In this paper, we present a study on the height of maximum speed-up for flows over low
hills under neutral atmosphere. The flow was assumed to be two-dimensional and the upwind
velocity profile was considered to be logarithmic. Furthermore, the determination of the
function )x(C2  was made from observational data obtained over the HT; so the result is
restricted to this site.

In our analysis, we show that l, calculated as the inner layer depth, is indeed the height of
maximum speed-up, lmax. We also propose a value for the function )x(C1  in CL’s expression,
eq. (6), and confirm that JEN’s expression gives better results than JH’s. Regarding this fact,
we suggest that JH’s expression should definitively be substituted for JEN’s or CL’s (which
seem to work just as well). We also believe that the BT’s results ratify that the best expression
lies between CL’s and JEN’s, as proposed here.

One thing worth of note is that the simple demonstration we present here, showing that
l=lmax, has apparently passed unnoticed over the years. We speculate that this is probably due
the fact that comparison between predictions for lmax and observations of l has always showed
good agreement, in most cases.

It is also worth noting that the demonstration of the equality l=lmax could have been used
itself as a new form of obtaining l. It uses the classical hypothesis about the relative order of
inertia and turbulence terms and introduces the requirement that 0zu =∂∆∂ , which
guarantees that l=lmax. Furthermore, it makes no use of turbulence closure models and allows



to a re-calibration of the function )x(C2  in case it is required by new observational data
available.
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