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Abstract

A high-resolution flux-vector splitting scheme is used to obtain the solution over a blunt
hypersonic body. The numerical simulations are concerned with the implementation of
unstructured grid, mesh refinement techniques for two-dimensional inviscid fluid flow. The
governing equations are discretized in a cell centered, finite volume procedure. Spatial
discretization considered a second-order flux-vector splitting scheme. A MUSCL
extrapolation of primitive variables is used in order to determine left and right states at the
interfaces. An adaptive mesh refinement procedure, based on a sensor of flow property
gradients, is performed to obtain a better resolution of strong discontinuities. Results for
different freestream Mach number are obtained in order to determine by analysis the
constitution of some phenomena presented in such high-speed flow.
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1. INTRODUCTION

The development of efficient numerical solvers is very important owing to the difficulties
and high costs associated with the experimental work at high speed flows. The hypersonic
fluid flow simulation over a blunt-nosed body is characterized by a strong detached shock
ahead the body. This phenomenon is particularly interesting because the curved bow shock is
a normal shock wave in the nose region, and away from this one has all possible oblique
shock solutions for a given freestream Mach number. A good capture of fluid flow features is
obtained by use of an appropriate refined mesh and an efficient fluid solver. The introduction
of mesh adaptivity reduces the number of grid elements because the regions that need to be
refined are small compared with the size of the complete computational domain. Therefore,
one can reduce storage and CPU requirements by the use of adaptive refinement, when
compared with a fixed fine mesh, which would yield the same resolution of the relevant flow
features. Some strategies to determine the mesh refinement have been derived (Sonar, 1995;
Marcum, 1995). In this work, a numerical sensor based on gradients of flow properties
determines the regions that need to be refined.

A finite volume formulation of compressible Euler equations in conservative form has
been considered.  A high-resolution scheme is employed in order to obtain a good spatially
resolution of the flow features. Many numerical upwind methods have been derived (van
Leer, 1982; Osher, 1985). In this work the simulations are performed by using an AUSM +

scheme (Liou, 1994). Liou states that this scheme achieve high accuracy over a wide range of
problems described by Euler and Navier-Stokes equations.



The second-order AUSM +  scheme is implemented in an unstructured grid context
(Azevedo and Korzenowski, 1998). In this approach, the convective operator can be
expressed as a sum of the convective and pressure terms. This scheme considers a MUSCL
approach (Hirsh, 1990), that is, the interface fluxes are  formed using left and right states at
the interface, which are linearly reconstructed by primitive variable extrapolation on each side
of the interface. The Euler equations are discretized in a cell centered based finite volume
procedure on triangular meshes. Time march uses an explicit, 2nd-order accurate, five-stage
Runge-Kutta time stepping scheme (Mavriplis, 1988).

The hypersonic flow simulations are performed over a blunt-nosed body. The freestream
Mach number were varied from M ∞ =10 until M ∞ =20. The fluid was treated as a perfect gas,
and no chemistry was taken into account. The shock detachment distance obtained by
numerical solutions was compared with the shock detachment distance estimated by Byllig’s
correlation (Billig, 1967). Results indicate that the scheme could adequately capture the
flowfield features.

2. THEORETICAL FORMULATION

The 2-D time-dependent Euler equations, in conservative form, can be written as
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where V  represents the area of the control volume and S  is its boundary. Expressions for the
vector of conserved quantities, Q, and the convective flux vectors, E  and F , are found in
Azevedo and Korzenowski (1998).

If the equations are discretized using a cell centered based finite volume procedure, the
discrete vector of conserved variables, iQ , is defined as an average over the i-th control

volume. In this context, the flow variables can be assumed as attributed to the centroid of each
cell. The Equation (1) can then be rewritten for the i-th volume as
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3. SPATIAL DISCRETIZATION ALGORITHM

The spatial discretization is concerned with finding a discrete approximation to the
surface integral in Equation (2). This approximation is essentially the convective operator,

)( iQC .

The numerical fluxes E  and F  can be expressed as the sum of the numerical convective
flux and the numerical pressure flux at each cell interface (Liou, 1996). Therefore, the
numerical convective flux is defined in terms of Mach number, speed of sound and the
quantity Φ , defined as THvu ),,,( ρρρρ=Φ . For the AUSM +  formulation, the Mach
number and the pressure are splitting accordingly some properties, as described in Liou
(1996).

The second-order method uses a MUSCL approach for the extrapolation of primitive
variables. By this approach, left and right states at a given interface are linearly reconstructed



by primitive variable extrapolation on each side of the interface, together with some
appropriate limiting process in order to avoid the generation of new extreme. In order to
reconstruct interface properties, the unstructured grid case considers a local one-dimensional
stencil normal to the edge considered.

The Liou scheme implemented in this work considers that the convective operator can be
expressed as a sum of the convective and pressure terms, given by the expression.
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where ik�  represents the length of the ik  edge. Expressions of the terms )(c
ikF  and ikP , as well

as details of the formulations can be found in Azevedo and Korzenowski (1998).
 
4. BOUNDARY CONDITIONS

The implementations of the boundary conditions were performed by using ghost cells.
Three types of boundary conditions were considered in the simulations over a hypersonic
body. They are entrance, wall and exit boundary conditions.

At the wall boundary, the flow must be tangent to the wall in the inviscid case. This is
done by imposing that the velocity component normal to the wall in the ghost volume has the
same magnitude and opposite sign of the normal velocity component in its adjacent interior
volume, whereas the ghost volume velocity component tangent to the wall is exactly equal to
its internal cell. Besides, a zero normal pressure gradient and a zero normal temperature
gradient at the wall is assuming.

For supersonic/hypersonic flow, all quantities at the entrance must be given. In the
present work, all flow properties are dimensionless. At the supersonic exit, all boundary
quantities are obtained by extrapolation of interior information.

5. GRID GENERATION AND ADAPTATION

The grid generation process is based on Pirzadeh (1993). In this approach a grid is
generated by forming cells starting from the domain boundaries and marching toward the
interior of the computational domain. The local grid characteristics, such as grid point
distribution, are controlled by information stored at the nodes of a secondary coarse mesh
referred as the background grid. The background grid consists of a structured grid that that
encloses the entire domain without the requirement of conforming to the configuration. Its
function is to guide a marching front for insertion of new points at proper locations. As the
front advances into the field, the grid parameters defining the position of a new point are
interpolated from the values stored at the nodes of the background grid cell that encloses the
point.
       The adaptive mesh refinement implemented in this work uses a sensor based on gradients
of flow properties, which identify the regions that require grid refinement. The process
consists of two steps. The first one is to compute the flow on an existing coarse mesh. With
this preliminary solution, one can calculate the sensor for all triangles. All marked triangles
are refined. A new finer mesh is then constructed by enrichment of the original grid.
        The mesh enrichment procedure introduces an additional node for each side of the
triangle marked by refinement. Then, the code has to search all triangles to identify cells that
have two or three divided sides. Each of these cells is subdivided into four new triangles. This
subdivision may eventually mark new faces. Therefore, this process has to be performed until



there are no triangles with more than one marked face. In order to avoid hanging nodes, the
triangles that have one marked face should be divided by halving.

The second step of the refinement process consists of identifying all triangles which were
refined by halving. This information is stored for the next refinement step because, if there is
again an attempt to subdivide these triangles by halving, this is not allowed. Therefore, if the
next refinement step tries to divide by halving a triangle which was obtained by a previous
division by halving, the logic in the code forces the original triangle to be divided into four
new triangles before the refinement procedure is allowed to continue.  When the mesh
enrichment procedure has been completed, the new control volumes receive the property
values of their “father” triangle and the flow solver is re-started.

6. RESULTS AND DISCUSSION

A blunt-nosed body was used to obtain the hypersonic fluid flow simulations. Although
simulations were performed for M ∞ =10 to M ∞ =20, only results for M ∞ =20 were presented.
The adaptive mesh adopted in the present simulations was obtained with one pass of
refinement. This refined level was performed when the 2L norm of the change in density
variable drops over two order of magnitude. Typically, around 2000 iterations are required to
satisfy this convergence criterion. The sensor was based on all primitive variable gradients.

Figure 1. Initial and adaptive unstructured meshes used on simulations at M ∞ =20.

Meshes with more than one adaptive refinement pass were generated, but the adoption of
more refined grids resulted in a bad convergence behavior. No freezing of limiters was used
here. The initial mesh has 6072 nodes and 11780 volumes, while the adaptive mesh is
composed of 7124 nodes and 12968 volumes. The initial and final meshes are shown in
Figure 1.

The Mach number contours obtained with the second-order Liou scheme are presented in
Figure 2. The contours indicate that the flow features are well captured by this solution, the
bow shock and the flow expansion over the body are well represented. One can see that at the
nose of the body the shock is normal, and away from this the shock wave gradually becomes
curved and weaker. The hypersonic flow ahead the shock becomes subsonic behind this one,



that is, there is a strong compression of the flow in this region. Slightly above the nose region,
the shock is oblique and pertains to the strong shock-wave solution. As we move further along
the shock, the wave angle becomes more oblique, and the flow deflection decreases until
reach the maximum deflection angle. From the nose region until this point the flow is
subsonic. Above this one, all points on the shock correspond to the weak shock solution. This
region is characterized by supersonic flow.

Figure 2. Mach contours obtained with the Liou scheme at M ∞ =20.

The streamline that passes through this normal portion of the shock impinges on the nose
of the body and controls the values of stagnation pressure and temperature at the nose. The
pressure and the density contours are plotted in Figure 3.

               
Figure 3. Pressure and density contours obtained with the Liou's scheme at M ∞ =20.



The contours indicate that the flow features are well captured by the Liou’s AUSM +

scheme can be observed in Figure 3. The oscillations presented in the strong shock ahead the
body, observed in Mach and density contours, can be improvement by use of a more refined
mesh. However, one has some difficulties to obtain convergence to machine zero with refined
meshes, as one still explains.

The pressure and density downstream of the wave, obtained by use of the basic normal
shock equations, are 22,3332 =p  and 926,52 =ρ , respectively. The properties obtained by the

numerical simulations are 82,3492 =p  and 11,62 =ρ . One can observe a minimal error between
the analytical and numerical results, indicating that the scheme was adequate to assess the
properties of the flow.

The shock detachment distance obtained by numerical solutions is 0,12m, and the shock
detachment distance estimated by Byllig’s correlation gives 0,05m. Figure 4 shows the Mach
number contours along the centerline and the shock location given by the correlation. One can
see the difference between these two approaches.
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Figure 4.  Computed Mach number on centerline surface.

Although the numerical shock location does not agree with the correlation, this result
makes some sense, because the simulations were performed considering that the fluid is a
perfect gas. If real gas effects are incorporated into computational solver, the shock location
will place nearer to the body. Results for reactive flow simulations can be found in Drikakis
and Tsangaris (1993).



7. CONCLUDING REMARKS

The present work performed hypersonic flow simulations over a blunt body. The
governing equations are discretized in an unstructured triangular mesh by a cell centered finite
volume algorithm. The spatial discretization considers an AUSM +  flux-vector splitting
scheme. A MUSCL reconstruction of primitive variables was used in order to obtain left and
right states at interfaces. The equations are advanced in time by an explicit, 5-stage, 2nd-order
accurate, Runge-Kutta time stepping procedure.

An inviscid formulation was used and the fluid was treated as a perfect gas. The solver
has been coupled with a mesh adaption algorithm. The adaptive refinement procedure uses a
sensor based on gradients of flow properties. The mesh generation introduces new points
automatically into computational domain by advancing front generation.

Results obtained with one pass of adaptive refinement are presented. Although the
simulations could capture all flow features with good accuracy, more refined mesh are
employed.
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