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Summary.

The Parabolized Stability Equations developed at the Ohio State University have given

scientist a new tool to investigate hydrodynamic stability. This formulation results in a

set of parabolic equations that describe the downstream evolution of convected instabil-

ities in slowly varying shear ows such as boundary layers, jets, and wakes. It is able to

consider nonlinear and nonparallel e�ects in a spatial analysis resulting in a much better

representation of the ow physics. The present paper presents a review of the PSE formu-

lation with emphasis on the discussion about the choice for the normalization condition,

which is necessary to close the system of equations. Results obtained by the author and

co-workers with their own implementation of a PSE code are also reviewed. First, the im-

portance of non-parallel e�ects is discussed. Then, results for the evolution of stationary

and traveling disturbances are presented and compared to experimental results.

Keyword: Laminar ow instability, Laminar-turbulent transition, Parabolized stability

equations.

1. INTRODUCTION

In a natural environment a laminar ow is always subject to disturbances such as

freestream turbulence, rugosity or structural vibration. if these disturbances are ampli�ed

the laminar ow may become turbulent. The �eld of hydrodynamic stability is concerned

with the study of how a given ow �eld may amplify or damp these initial disturbances

and how the evolution of this disturbances is related to transition to turbulence.

The equations that describe an instability problem may be derived by assuming that

the instantaneous ow is decomposed into a mean steady ow and a small perturbation,

v = V +v0. Initial disturbances of small amplitude propagate in the ow as wave structures

that may be represented by their frequency, wavenumber and growth rate. In this way a

small perturbation has a general form v0 = v(y) exp[i(�x+�z�!t)]. Where x, y and z are

the streamwise, normal and spanwise coordinate directions, � and � are the streamwise

and spanwise wavenumbers, and ! the disturbance frequency. This solution is called a

`normal mode solution'.



The early work on stability of shear layers neglected the growth of the shear layer

such that the mean ow could be represented by V = V (y) only, independent of the

streamwise direction x. This assumption that the ow is `locally parallel' greatly simpli�es

the resulting governing equation. The resulting ordinary di�erential equation is know as

the `Orr-Sommerfeld' equation (after the two scientist who derived the equation in the

beginning of the century) and correspond to what is called a `local analysis' since it does

not depend explicitly on the streamwise coordinate. Another simplifying assumption

was that the disturbances grow or decay in time (temporal analysis), such that ! =

!r + i!i. The imaginary part represents the disturbance growth rate. With the advance

of mathematical and computational methods it was possible to represent spatially growing

disturbances assuming that � = �r + i�i, which results in a more complex equation.

Over the years the Orr-Sommerfeld equations have been extensively used and mod-

i�ed to account for nonparallel (Gaster, 1974; Saric and Nayfeh, 1975) and nonlinear

e�ects (Eckhaus, 1965; Herbert, 1988). These studies were based on secondary insta-

bility theory and perturbation methods which involve a large amount of algebraic work.

In the late eighties and early nighties, Herbert and Bertolotti (Herbert and Bertolotti,

1987; Bertolotti and Herbert, 1991) realized that using WKBJ approximations or multiple

scales, it was possible to arrive at parabolized equations that could be marched down-

stream without further simpli�cations to arrive at ordinary di�erential equations and,

consequently without further limiting assumptions. They called the resulting equations

`Parabolized Stability Equations' (PSE).

Since then, the PSE have been applied to a diverse range of laminar ow stability prob-

lems, including incompressible and compressible boundary layers, cross ow instability,

centrifugal instability, wave interactions, receptivity and secondary instability analysis.

The PSE can take into account both nonlinear and nonparallel e�ects in a consistent

way. It takes into account the history of the disturbance since it is a parabolic formulation.

Unlike temporal analysis, in which it is assumed that the disturbances grow in time, it

follows the spatial development of the ow. Compared to DNS solutions PSE solutions

are much less computer intensive and can be run on desktop workstations.

2. PARABOLIZED STABILITY EQUATIONS

The formulation and numerical method presented in this paper was implemented

in a code developed by the author (Mendon�ca, 1997). It is based on the original PSE

formulation developed by Herbert and Bertolotti (Herbert and Bertolotti, 1987; Bertolotti

and Herbert, 1991).

The Navier-Stokes equations for an incompressible ow of a Newtonian uid are

simpli�ed by assuming that the dependent variables are decomposed into a mean com-

ponent and a uctuating component as: ~u� = ~U� + ~u0�; and p� = P � + p0�; where
~u� = [u�; v�; w�]T is the velocity vector and p� is the pressure. The superscript `�' indi-

cates dimensional variables.

The coordinate system is based on the streamlines ( �) and potential lines (��) of the

inviscid ow over a curved plate. This choice of coordinate system is used to simplify the

equations in curvilinear coordinate systems for the analysis of centrifugal instabilities.

The equations are nondimensionalized using ��0 and U�
1 as the length and velocity

scaling parameters, where ��0 = (����0=U
�
1)

1=2
is the boundary layer thickness parameter,

U�
1 is the free stream velocity, ��0 is a reference length taken as the streamwise location

where initial conditions are applied, and �� is the kinematic viscosity. The Reynolds

number is de�ned as: Re = U�
1�

�
0=�

�:



The mean ow is governed by Prandtl boundary layer equations for the ow over a

at plate. The resulting governing equations for the perturbations are elliptic and the

perturbations propagate in the ow �eld as wave structures. The governing equations can

be simpli�ed if the wave like nature of the perturbations are represented by their frequency,

wavenumber, and growth rate. The perturbation �0 is assumed to be composed of a

slowly varying shape function and an exponential oscillatory wave term. It is represented

mathematically as a Fourier expansion truncated to a �nite number of modes:

�0 =
NX

n=�N

MX
m=�M

�n;m(�;  ) exp

"Z
�

�0

an;m(�)d� + im�z � in!t

#
: (1)

where an;m(�) = n;m(�) + in�(�), and �n;m(�;  ) = [un;m; vn;m; wn;m; pn;m]
T
is the com-

plex shape function vector. This procedure is similar to a normal mode analysis, but, in

this case, the shape function �n;m is a function of both � and  .

The streamwise growth rate n;m, the streamwise wavenumber �, and the spanwise

wavenumber � were nondimensionalized using the boundary layer thickness parameter

��0. The frequency ! was nondimensionalized using the free stream velocity U�
1 and the

boundary layer thickness parameter ��0 .

The perturbation variable �0, as de�ned in Eq. (1), is substituted in the governing

equations which are then simpli�ed by assuming that the shape function, wavelength, and

growth rate vary slowly in the streamwise direction. Second order derivatives and prod-

ucts of �rst order derivatives can, therefore, be neglected. After performing a harmonic

balance in the frequency, a set of coupled nonlinear equations is obtained. These resulting

equations are known as the Parabolized Stability Equations (PSE). For each mode (n;m)

the equation in vector form results:

An;m�n;m +Bn;m

@�n;m

@�
+ Cn;m

@�n;m

@ 
+Dn;m

@2�n;m

@ 2
=

En;m

e

R �
�0

an;m(�)d�
; (2)

where the coe�cient matrices can be found in Mendon�ca (1997).

The resulting equations are parabolic in � and the solution can be marched down-

stream given initial conditions at a starting position �0. The approach is correct as long

as the instabilities are convective and propagate in the direction of the mean ow, not

a�ecting the ow �eld upstream.

The boundary conditions for Eq. (2) are given by homogeneous Dirichlet no-slip

conditions at the wall, Neumann boundary conditions for the velocity components in

the far �eld, and homogeneous Dirichlet condition for pressure in the far �eld. Non-

homogeneous boundary conditions for the normal velocity components are also possible,

allowing suction and blowing at the wall to be introduced. For the parabolic formula-

tion, it is necessary to specify initial conditions at a starting position �0 downstream of

the stagnation point at the leading edge of the curved plate. The initial conditions are

obtained from Orr-Sommerfeld solutions for Tollmien-Schlichting waves and similar local

solutions for centrifugal instability problems (G�ortler or Dean problems).

2.1 Normalization condition

The splitting of the perturbation �0(�;  ; z; t) in Eq. (1) into two functions, �n;m(�;  )

and an;m(�), is ambiguous, since both are functions of the streamwise coordinate �. It

is necessary to de�ne how much variation will be represented by the shape function



�n;m(�;  ), and how much will be represented by the complex wavenumber an;m(�). This

de�nition has to guarantee that rapid changes in the streamwise direction are avoided

so that the hypothesis of slowly changing variables is not violated. The objective is to

transfer fast variations of �n;m(�;  ) in the streamwise direction to the streamwise com-

plex wavenumber an;m(�) = n;m(�) + in�(�). If this variation is represented by bn;m,

for each step in the streamwise direction it is necessary to iterate on an;m(�) until bn;m
is smaller than a given threshold. At each iteration k, an;m(�) is updated according to

(an;m)k+1 = (an;m)k + (bn;m)k: The variation bn;m of the shape function can be monitored

in di�erent ways. Possible choices are presented below.

bn;m =
1R

1

0 k~un;mk2d 
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bn;m =
1

jun;m(x; ymax)j

@un;m(x; ymax)

@�
; (5)

In Eq. (3), ~uy
n;m

is the complex conjugate of ~un;m. The integral of k~un;mk
2 was

used to assure that the variation is independent from the magnitude of ~un;m. Equation

(4) monitors the variation of the Kinetic energy E = u2
n;m

+ v2
n;m

+ w2
n;m

. In Eq. (5)

un;m(x; ymax) is the streamwise velocity component measured at the location away from

the wall where it reaches a maximum.

2.2 Numerical method

The system of parabolic nonlinear coupled equations given by Eq. (2) is solved nu-

merically using �nite di�erences. The partial di�erential equation is discretized implicitly

using a second order backward di�erencing in the streamwise direction, and fourth order

central di�erencing in the normal direction. The resulting coupled algebraic equations

form a block pentadiagonal system which is solved by LU decomposition.

To start the computation a �rst order backward di�erencing is used. The �rst or-

der approximation is used also in a few subsequent steps downstream in order to damp

numerical transients more e�ciently. For the points neighboring the boundaries, second

order central di�erencing in the normal direction is used.

The nonlinear terms are evaluated iteratively at each step in the streamwise direc-

tion. The iterative process is used to enforce both the normalization condition and the

convergence of the nonlinear terms. A Gauss-Siedel iteration with successive overrelax-

ation is used. The nonlinear products are evaluated in the time domain. The dependent

variables in the frequency domain are converted to the time domain by an inverse Fast

Fourier Transform subroutine. The nonlinear products are evaluated and the results are

transformed back to the frequency domain. The complex wavenumber is updated at each

iteration and the variation in the shape function is monitored through Eq. (3). The

iteration is considered converged when the normalization condition is no larger than a

given small threshold.

Results from the present numerical implementation of the PSE have been compared to

experimental and numerical results for K-type breakdown, H-type breakdown and for the

nonlinear development of G�ortler Vortices. The code was able to reproduce the nonlinear

development of interacting disturbances with good accuracy.



3. ON THE NORMALIZATION CONDITION

Using the code developed based on the above formulation, we may now investigate

the e�ect of normalization condition on the results obtained for the evolution of Tollmien-

Schlichting waves. Figure 1 presents a comparison between the three di�erent normaliza-

tion conditions presented above for the variation of the amplitude of a two-dimensional

(2D) TS wave of frequency F = !=Re106 = 86. The computation starts at a stable

position close to the lower branch of the neutral curve and continues up to a position past

the upper branch of the neutral curve. It can be seen that the results are not dependent

on the choice of the normalization condition. Figure 2 and 3 present the variation of the

growth rate and streamwise wavenumber for the three di�erent choices of the normal-

ization condition presented above. It can be seen that the choice of the normalization

condition changes slightly the value of these variables.

1e-05

0.0001

0.001

400 450 500 550 600 650 700 750 800 850 900 950

disturbance amplitude

Re

normalization based on Eq. 7
normalization based on Eq. 8
normalization based on Eq. 9

Figure 1: Growth and decay of the maximum amplitude of a 2D TS wave for di�erent

choices of normalization condition.

The real (physical) wavenumber and growth rate should take into account the varia-

tions left in the shape function. This is done by computing:

(x) = (x) +

"
1

un;m(x; ymax)

@un;m(x; ymax)

@�

#
r

;

�(x) = �(x) +

"
1

un;m(x; ymax)

@un;m(x; ymax)

@�

#
i

;

where the subscripts r and i represent the real and imaginary parts respectively.

It can be seen in �gure 4 and 5 that the physical quantities are independent of the

choice for the normalization condition. In fact, since the normalization condition transfers

fast variations of the shape function �n;m to the exponential function exp [
R
an;m(�)d�], as

long as the hypothesis of slow variation of the shape function in the streamwise direction is

not violated, small variations in the normalization condition does not change the results.

4. NONPARALLEL EFFECTS

Nonparallel e�ects are signi�cant mainly for the evolution of three-dimensional (3D)

disturbances. Using PSE to compute the growth rate of 2D TS waves Bertolotti (Bertolotti
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Figure 2: Variation of the growth rate

for di�erent choices of the normaliza-

tion condition.

0.095

0.096

0.097

0.098

0.099

0.1

0.101

0.102

400 450 500 550 600 650 700 750 800 850 900 950

w
av

e 
nu

m
be

r

Re

normalization condition based on Eq. 7
normalization condition based on Eq. 8
normalization condition based on Eq. 9

Figure 3: Variation of the streamwise

wavenumber for di�erent choices of the

normalization condition.
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Figure 4: Variation of the physical

growth rate.
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Figure 5: Variation of the physical

streamwise wavenumber.

et al. , 1992) showed that the large discrepancies observed between experimental re-

sults and normal modes computations could not be attributed to the small e�ect of non-

parallelism. These discrepancies are due to the choice of the way the disturbance growth

is monitored, either based on amplitude, total kinetic energy or at a �xed distance from

the wall.

For 3D TS waves nonparallel e�ects increase with the increase of the angle between the

mean ow direction and the wave propagation direction. The present PSE implementation

is now used to show this e�ect. Figure presents comparisons between local parallel

computations and nonparallel PSE computations for di�erent wavenumbers b = �103=Re.

The TS wave frequency is F = !106=Re = 86. It can be seen that as b increases the oblique

waves are destabilized by nonparallel e�ects. For b = :3 the parallel theory predicts stable

waves while nonparallel theory still predicts unstable disturbances for a range of Reynolds

numbers.

5. SOME NONLINEAR RESULTS

In this section some computational results for the nonlinear evolution of 3D distur-

bances are presented and compared to experimental results to illustrate the capabilities

of the PSE. Figure 7 presents results for the nonlinear evolution of G�ortler vortices. The

computational results are compared to experimental results (Swearingen and Blackwelder,

1987) for two di�erent streamwise positions. AT x = 60 cm the spanwise periodic struc-

ture is already visible. At x = 80 cm the vortices are forming the characteristic mushroom
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Figure 6: Growth rate based on maximum amplitude. Comparison between parallel

(symbols) and nonparallel computations (lines).

type structures. The computational results compare well with the experimental results.
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Figure 7: Nonlinear evolution of G�ortler vortices. Comparison between PSE results (left)

and experimental results (right) (Swearingen and Blackwelder, 1987) for the streamwise

velocity distribution in the spanwise plane.

Figures 8 presents experimental results for the evolution of a 3D wave-train emanating

from a harmonic point source. The nonlinear evolution is responsible for the development

of streamwise streaks. These streaks evolve downstream and, at the centerline a negative

streak splits into two. A positive streak grows between the two resulting streaks. A model

problem consisting of a pair of oblique waves was used to represent the evolution of a wave-

train. The computational result for this model problem shows the growth of longitudinal

vortical structures given by Fourier modes (0,2) and (0,4). The corresponding, spanwise

periodic, longitudinal streaks are shown in Fig. 9. The �gure shows a positive streak

forming at the centerline, growing close to the wall and splitting a negative streak in a



way consistent with experimental results.

Detailed discussions for these results are presented elsewhere (Mendon�ca, 1997; Men-

don�ca et al. , 2000b; Mendon�ca et al. , 2000a; Mendon�ca and Medeiros, 1999; Medeiros

and Mendon�ca, 1999).
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Figure 8: Experimental results for the evolution of a three-dimensional wave-train ema-

nating from a point source. Left { the centerline evolution showing the growth of a mean

ow distortion that changes from negative to positive. Right { downstream evolution of

longitudinal streaks showing the spanwise structure with the splitting of a negative streak

and the growth of a positive streak at the centerline.

6. CONCLUSIONS

The Parabolized Stability Equations can be used to study the propagation of traveling

and stationary convected disturbances in slowly varying shear layers. They are able to

take into account nonlinear, nonparallel e�ects in a consistent way. The PSE involves less

analytical work than a multiple scales analysis and is much less computationally intensive

than a direct numerical simulation.

A PSE code has been successfully implemented to study the nonlinear interaction of

three-dimensional disturbances. This code has been used by the author and co-workers

to investigate the evolution of longitudinal stationary structures due to centrifugal and

nonlinear e�ects. The present review shows that the choice of the normalization condition

does not a�ect the physical growth rate and wavenumbers. It also shows that nonparallel

e�ects are signi�cant for three-dimensional disturbances and should be taken into account

in a stability analysis.
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