SIMULAÇÃO DE DESEMPENHO DE BOMBA CENTRÍFUGA PARA TURBOBOMBA DE MOTOR-FOGUETE A PROPELENTE LÍQUIDO

Renato Yassuo Tamashiro

João Roberto Barbosa

Instituto Tecnológico de Aeronáutica, Departamento de Energia, 12228-901, São José dos Campos, SP, Brasil. E-mail: barbosa@mec.ita.cta.br

Resumo

Este trabalho tem por objetivo definir uma metodologia para dimensionamento e simulação de operação de uma bomba centrífuga aplicável em turbobombas de motor-foguete a propelente líquido. São determinadas as dimensões dos principais elementos de uma bomba: alimentador, indutor em espiral, impelidor, coletor e difusor, a partir das características do fluido e das condições de operação da bomba. Um modelo de perdas que leva em consideração as principais fontes de variação das condições ideais é estabelecido. Um algoritmo, implementado em *Mathcad*, é utilizado para resolver o sistema de equações obtido. Definida a geometria da bomba, um novo algoritmo é definido para obter as perdas durante o funcionamento fora do ponto de projeto, com vistas à obtenção dos mapas de desempenho da bomba centrífuga. A validade do modelo é verificada através do dimensionamento e da simulação de uma turbobomba para utilização no motor russo RD-109, cujas característica são conhecidas.

Palavras-chave: propulsão, foguetes, turbobomba, bomba centrífuga.

1. INTRODUÇÃO

O estudo e aprimoramento de turbobombas para aplicação em motor-foguete surgiu da necessidade de uma máquina que operasse com uma rotação muito elevada, condições extremas de temperatura e que fosse ao mesmo tempo leve, pequena e confiável. A turbobomba é um dos principais componentes de um motor-foguete e compõe-se basicamente de três elementos: turbina, bomba de oxidante e bomba de combustível. Os principais requisitos de uma turbobomba para aplicação espacial são alta confiabilidade, baixo custo, mínimo peso, fluxo estável dentro dos limites de operação, alta eficiência e desempenho adequado de sucção.

Tendo por base a experiência dos russos no projeto, fabricação e desenvolvimento de motores-foguete, procurou-se aplicar os seus conhecimentos, relatados em literatura aberta, para o desenvolvimento de uma metodologia de projeto e de simulação de funcionamento de uma bomba centrífuga. O motor RD-109 é usado nos estágios superiores de veículos de lançamento. Foi desenvolvido entre 1958 e 1962 e com ele um patamar de confiabilidade foi atingido. É produzido e usado até hoje pelos russos. Pelo fato de alguns dados de projeto e de desempenho dessa bomba estarem disponíveis, foi escolhida como referência neste trabalho.

O RD-109 utiliza oxigênio líquido como oxidante e querosene como combustível. A turbobomba deste motor movimenta o propelente para o interior da câmara de combustão e do gerador de gás. Ela possui um eixo simples onde estão acopladas a turbina e duas bombas centrífugas. O conjunto rotativo tem seu movimento e apoio proporcionados por dois rolamentos especiais. A bomba de oxidante possui um impelidor do tipo centrífugo, fechado, com uma entrada axial e um indutor helicoidal.

2. PRINCIPAIS ELEMENTOS DE UMA BOMBA CENTRÍFUGA

2.1 Indutor helicoidal

Conhecendo-se a vazão volumétrica V, a rotação ω e a geometria da bomba, podem-se obter as velocidades absoluta $c_{1z,s}$, tangencial $u_{s,p}$ e o triângulo de velocidades na entrada do indutor. Em geral, o ângulo de escoamento $\beta_{1,s,p}$ não deve exceder 8° e o ângulo de incidência i_p não deve exceder 3° de forma a evitar o descolamento do escoamento na bomba, conforme observa Ovsyannikov e Borovskiy (1973).

As velocidades axial, tangencial e absoluta na saída do rotor podem ser calculadas por

$$c_{1z.s} = 4V (\pi D_{s.eq}^2)^{-1}, \qquad u_{s.p} = 0.5 \omega D_s \qquad e \qquad c_{2u.s} = v_{2.rel} u_{s.p}$$
⁽¹⁾

onde $\mathbf{D}_{s,eq}$ é o diâmetro equivalente do indutor, $\mathbf{v}_{2,rel}$ é a razão de velocidades e $\mathbf{u}_{s,p}$ é a velocidade tangencial no diâmetro \mathbf{D}_s . A área do círculo caracterizado por $\mathbf{D}_{s,eq}$ é igual à área da coroa circular definida pelo diâmetro do cubo \mathbf{d}_{hub} e pelo diâmetro externo do indutor \mathbf{D}_s .

2.2 Impelidor centrífugo

O escoamento no espaço entre o indutor e o impelidor é considerado sem perdas, obedecendo a lei de vórtice livre c_{1u} .r = constante, sendo c_{1u} a componente tangencial da velocidade absoluta na entrada do impelidor e r a distância radial. Assim,

$$c_{1u} = D_s D_1^{-1} c_{2us}.$$
 (2)

A partir da velocidade angular ω e do diâmetro de entrada no impelidor **D**₁ obtém-se a velocidade tangencial **u**₁. A componente meridional da velocidade absoluta **c**_{1m} é dada pela razão da vazão que atravessa o impelidor e a área da seção transversal ao escoamento. Daí

$$u_1 = 0.5\omega D_1$$
 e $c_{1m} = V(\pi D_1 b_1 \eta_{flow})^{-1}$ (3)

onde \mathbf{b}_1 é a altura da pá do impelidor no diâmetro D_1 e η_{flow} é o rendimento volumétrico da bomba.

Do triângulo de velocidades determinam-se a velocidade relativa w_1 e o ângulo do escoamento na entrada do impelidor β_1 e, deste, o ângulo da pá $\beta_{1,B}$:

$$w_{1} = \sqrt{c_{1m}^{2} + (u_{1} - c_{1u})^{2}}, \qquad \beta_{1} = \tan^{-1} (c_{1m} (u_{1} - c_{1u})^{-1}) \qquad e \qquad (4)$$

$$\boldsymbol{\beta}_{1,B} = \boldsymbol{\beta}_1 + i \tag{5}$$

onde i é o ângulo de incidência na entrada do impelidor.

De forma semelhante, obtêm-se as velocidades tangencial u_2 , a componente meridional da velocidade absoluta c_{2m} e a componente tangencial da velocidade absoluta c_{2u} , na saída do impelidor:

$$u_2 = 0.5\omega D_2$$
, $c_{2m} = V(\pi D_2 b_2 \eta_{flow})^{-1}$ e $c_{2u} = c_{2u.inf} k_z$ (6)

onde D_2 é o diâmetro de saída no impelidor, b_2 é a altura do impelidor no diâmetro D_2 , k_z é o fator de escorregamento, ψ um coeficiente empírico dado por Ovsyannikov e Celifonov (1996) e $c_{2u,inf}$ é a componente tangencial da velocidade absoluta considerando-se o número de pás z_K infinito. Os valores de k_z , Ψ e $c_{2u,inf}$ são dados por:

$$k_{z} = \left(1 + 2\psi \left[z_{K} \left(1 - \left(\frac{D_{1}}{D_{2}}\right)^{2}\right)\right]^{-1}\right)^{-1}, \qquad \psi = \left(\frac{c_{2m}}{u_{2}}\right)^{\frac{1}{6}} \left(1 + \sin\beta_{2,B}\right) \qquad e$$
(7)

$$c_{2u,inf} = u_2 - c_{2m} (\tan \beta_{2,B})^{-1}.$$
 (8)

3. MODELO DAS PRINCIPAIS PERDAS

Assim como em qualquer máquina de fluxo, numa bomba centrífuga observa-se uma conversão de energia acompanhada de perdas. Torna-se então imprescindível o estudo da natureza e da magnitude dessas perdas, de forma a minimizar seus aspectos indesejáveis e melhorar o desempenho da bomba.

Com a identificação das perdas e principalmente dos processos através dos quais elas aparecem e afetam o desempenho da bomba, tornam-se possíveis as alterações na sua modelação real. Com isso, pode-se conhecer antecipadamente o funcionamento da bomba e, desta forma, avaliá-la melhor.

Neste trabalho as perdas consideradas são: perdas hidráulicas, perdas por fuga do fluido, perda por fricção do rotor e perdas mecânicas. Não são consideradas separadamente as perdas de topo, embora tenham influência significativa no desempenho de bombas.

3.1 Perda hidráulica

A perda hidráulica de uma bomba centrífuga decompõe-se em perda hidráulica no alimentador (L_{in}), no indutor (L_S), no impelidor (L_K), no coletor (L_C) e no difusor cônico (L_{KD}).

$$L_{hidr} = L_{in} + L_S + L_K + L_C + L_{KD}, \qquad \text{com} \qquad L_{in} = 0.5\zeta_{in}c_{1z}^2$$
(9)

onde c_{1z} é a velocidade axial e ζ_{in} é o coeficiente de perda no alimentador.

A perda de energia no indutor L_s é dada pela diferença entre a capacidade de carga teórica do indutor H_{Ts} e a capacidade de carga real H_s :

$$L_s = H_{T.s} - H_s. \tag{10}$$

O valor de \mathbf{H}_{Ts} é encontrado a partir da equação de Euler (para $c_{1u} = 0$):

$$H_{T.s} = c_{2u.ave} u_{ave}$$
(11)

onde \mathbf{u}_{ave} é a velocidade tangencial no diâmetro médio e $\mathbf{c}_{2u,ave}$ é a componente tangencial da velocidade absoluta no diâmetro médio. Considerando-se que:

$$H_{s} = \eta_{hidr.s} c_{2u.ave} u_{ave} \qquad \text{tem-se} \qquad L_{s} = (1 - \eta_{hidr.s}) c_{2u.ave} u_{ave} \qquad (12)$$

onde $\eta_{\text{hidr.s}}$ é o rendimento hidráulico do indutor.

A perda de energia no impelidor L_K é proporcional ao quadrado da velocidade relativa na entrada do impelidor:

$$L_{K} = 0.5\zeta_{K} w_{\perp}^{2}$$
⁽¹⁴⁾

onde ζ_K é o coeficiente de perda de energia no impelidor e w_1 é a velocidade relativa na entrada do impelidor determinada pelo triângulo de velocidades:

$$w_1^2 = c_{1m}^2 + \left(u_1 - c_{1u}\right)^2.$$
⁽¹⁵⁾

O coeficiente de perda $\zeta_{\mathbf{K}}$ diminui com a redução da quantidade de energia transmitida ao líquido pelo indutor. A utilização do indutor em conjunto com o impelidor assegura uma pré-rotação do fluido na entrada do anel centrífugo. Isto leva a uma redução da perda de energia no impelidor.

A perda no coletor L_C , posicionado logo após o impelidor, é dada por

$$L_{\rm C} = 0.5 \zeta_{\rm C} c_{\rm 2u}^2 \tag{16}$$

onde ζ_{C} é o coeficiente de perda no coletor e c_{2u} é a componente tangencial da velocidade absoluta na saída do impelidor.

A perda no difusor cônico L_{KD} é determinada por:

$$L_{\rm KD} = 0.5\zeta_{\rm KD}c_{\rm g}^2 \tag{17}$$

onde c_g é a velocidade absoluta na entrada do difusor cônico.

O coeficiente de perda ζ_{KD} depende da correlação de áreas de saída, \mathbf{F}_{out} , e da garganta, \mathbf{F}_{g} , do difusor e do ângulo equivalente α_{eq} do difusor, conforme a equação abaixo:

$$\zeta_{\rm KD} = 1.15 tg \alpha_{\rm eq} \sqrt[3]{F_{\rm out} F_{\rm g}^{-1} - 1} \,. \tag{18}$$

Conhecendo-se todas as parcelas que constituem a perda hidráulica total, podem-se calcular a capacidade de carga teórica \mathbf{H}_{T} da bomba e o rendimento hidráulico, η_{hidr} , que caracteriza as qualidades do escoamento que atravessa a bomba, por:

$$H_{T} = H + L_{hidr}$$
 e $\eta_{hidr} = \frac{H}{H_{T}} = \frac{H}{H + L_{hidr}}$. (19)

3.2 Perda por fuga

Perda por fuga ou vazamento é aquela devida à passagem de fluido por pequenas folgas existentes entre o impelidor e a carcaça da bomba. Devido à quantidade de vazamento V_{seal} , a vazão que atravessa o impelidor ($V + V_{seal}$) é maior que a vazão da bomba (V). A razão entre a vazão da bomba e a vazão do impelidor denomina-se rendimento volumétrico:

$$\eta_{\text{flow}} = V (V + V_{\text{seal}})^{-1}.$$
⁽²⁰⁾

O sistema de vedação separa duas cavidades: uma de alta pressão e outra de baixa pressão, na região do impelidor. O vazamento depende da área da seção transversal, da geometria da folga e da diferença de pressão no anel de vedação. Segundo Pfleiderer (1948), a vazão através da folga é determinada pela equação

$$V_{\text{seal}} = \mu f_{\text{seal}} \sqrt{2\rho^{-1} (p_{\text{seal}} - p_{\text{imp}})}$$
(21)

onde μ é o coeficiente de vazão, \mathbf{f}_{seal} é a seção de passagem do anel de vedação, \mathbf{p}_{seal} é a pressão na frente do anel de vedação, ρ é a massa específica do fluido e \mathbf{p}_{imp} é a pressão de entrada no impelidor. O coeficiente de vazão μ é determinado pela magnitude da resistência hidráulica do anel de vedação. Quanto maior essa resistência, mantida constante a diferença de pressão, menor o fluxo que atravessa o anel de vedação. Esse coeficiente pode ser calculado, segundo Ovsyannikov e Borovskiy (1973), por

$$\mu = \left(\frac{\lambda l_{\text{seal}}}{\delta_{\text{seal}}} + 1.5\right)^{-0.5}$$
(22)

onde λ é o coeficiente de fricção, \mathbf{l}_{seal} é o comprimento do anel de vedação e δ_{seal} é a folga radial do anel de vedação.

3.3 Perda por fricção do rotor

Trata-se da energia consumida para movimentar o impelidor. Este tipo de perda ocorre devido a dois fatores: a fricção real do fluido sobre o rotor, que é relativamente menor, e a ação de bombeamento do fluido em contato com o rotor, pelo qual o fluido é movimentado localmente pela ação de forças centrífugas, de acordo com Huzel e Huang (1992). A energia perdida devido à fricção do rotor transforma-se em calor e pode aumentar apreciavelmente a temperatura do fluido. A potência de fricção do rotor é determinada pela equação

$$N_{disk} = 2C_{disk} \rho (0.5D_2)^5 \omega^3.$$
(23)

O coeficiente de fricção C_{disk} é determinado em função do número de Reynolds. Para rotores lisos, obtém-se, para $Re > 10^5$:

$$C_{disk} = 0.039 (Re)^{-0.2}$$
. (24)

Determina-se o rendimento do rotor pela equação

$$\eta_{\text{disk}} = 1 - N_{\text{disk}} \left(\rho (V + V_{\text{seal}}) H_{\text{T}} + N_{\text{disk}} \right)^{-1}.$$
(25)

3.4 Perda mecânica

As perdas por fricção nas vedações, segundo Stepanoff (1948), são afetadas por inúmeros fatores, como por exemplo, tamanho e profundidade da vedação, rotação da bomba, pressão e métodos de empacotamento e lubrificação. Assim, dados de literatura seriam válidos somente para um certo tipo de vedação e aplicação. Com relação aos rolamentos, ainda que suas di-

mensões estejam padronizadas, as perdas por fricção variam para um mesmo tamanho e carga de operação, de acordo com os diferentes modos de fabricação. Da mesma forma, o método de lubrificação afeta as perdas nos rolamentos.

A experiência tem mostrado que o rendimento mecânico η_{mec} de uma bomba de alta rotação pode atingir valores entre 0,95 e 0,97 no ponto de projeto. Neste trabalho as perdas mecânicas foram consideradas constantes e, em conseqüência, η_{mec} foi fixado em 0,95.

4. VERIFICAÇÃO DA VALIDADE DO MODELO USANDO DADOS DA TURBO-BOMBA DO MOTOR RD-109

O modelo de perdas foi utilizado tanto no dimensionamento da bomba como na simulação de seu desempenho no ponto de projeto e fora dele. No que se segue é descrito como se desenvolveu o projeto da bomba e como seu funcionamento foi simulado a partir do modelo de perdas adotado.

4.1 Projeto de bombas utilizando a metodologia desenvolvida

A Tabela 1 mostra os dados iniciais relativos à bomba de oxidante do motor RD-109, para os cálculos da bomba centrífuga usados neste trabalho.

Dados iniciais	símbolo	valor	unidade
Vazão de massa	m _p	11,83	kg/s
Pressão requerida na saída da bomba	Pout	$6,57.10^{6}$	Pa
Pressão mínima na entrada da bomba	\mathbf{p}_{in}	$0,29.10^{6}$	Pa
Temperatura máxima na entrada da bomba	T _{in}	90	K
Pressão de vapor	p s	$0,13.10^{6}$	Pa
Densidade	Q	1140	kg/m ³
Viscosidade	ν	$1,66.10^{-7}$	m ² /s
Potência consumida pela bomba (oxidante)	No	$102,9.10^3$	W
Potência consumida pela bomba (combustível)	N _f	$109,62.10^3$	W
Tensão de torção admissível do eixo	τ	$1,0.10^8$	Pa
Ângulo de saída do impelidor	β	8°	
Ângulo de incidência do impelidor	ι	0,7°	

Tabela 1 - Dados iniciais para o cálculo da bomba de oxidante

A partir destes dados e obedecendo algumas restrições de projeto, tais como qualidade anti-cavitacional e tensão de torção admissível do eixo, obtém-se a velocidade angular, o rendimento, a potência consumida e as principais dimensões da bomba centrífuga. Os detalhes do projeto podem ser obtidos em Tamashiro (1999).

Utilizando-se os modelos de perdas indicados, foi montada uma seqüência de cálculos utilizando-se o software *Mathcad*. Os dados de entrada são a geometria da bomba, a vazão requerida e a rotação. Como resultado, obtém-se a capacidade de carga H, as perdas e o rendimento. O programa utilizado faz variar automaticamente a vazão e a rotação, obtendo-se os dados necessários para a construção das curvas ilustradas nas Figuras 1 e 2, também obtidas automaticamente. Os valores que definem a geometria da bomba, a velocidade de rotação, o rendimento e a potência consumida estão listados na Tabela 2, bem como os respectivos valores para a bomba de oxidante do motor RD-109 e a variação percentual obtida entre essas medidas. Os resultados obtidos poderiam ser mais próximos dos valores da bomba do RD-109, uma vez que alguns dados de projeto poderiam ter sido alterados. Neste trabalho optou-se por adotar valores médios. Utilizando-se a seqüência de cálculos pode-se ainda calcular as perdas e, em conseqüência, o desempenho da bomba fora do ponto de projeto. Então, definida a geometria e fixada uma velocidade de rotação, faz-se variar a vazão de massa para a obtenção das características da bomba analisada.

Parâmetros analisados	símbolo	calculado	RD-109	%
Velocidade de rotação (rpm)	n _{RPM}	36544	33800	8
Diâmetro do cubo (10^{-3} m)	d _{hub}	18,25	18,59	2
Diâmetro externo do indutor (10 ⁻³ m)	Ds	40,74	41,50	2
Diâmetro na entrada do impelidor (10^{-3} m)	\mathbf{D}_1	33,00	36,40	9
Diâmetro de entrada no impelidor (10^{-3} m)	\mathbf{D}_{0}	40,74	44,85	9
Altura inicial da pá do impelidor (10 ⁻³ m)	b 1	16,75	18,35	9
Diâmetro externo na entrada do impelidor (10^{-3} m)	D `1	49,70	50,57	2
Altura final da pá do impelidor (10^{-3} m)	\mathbf{b}_2	4,59	5,38	15
Diâmetro na saída do impelidor (10 ⁻³ m)	\mathbf{D}_2	73,93	80,50	8
Rendimento da bomba de oxidante	η	0,61	0,58	5
Potência consumida (10^3 W)	No	115,4	121,6	5

0.65

Tabela 2 - Valores calculados comparados com os valores da bomba do motor RD-109

Figura 1 - Comportamento da capacidade de carga em função da vazão de oxidante

Figura 2 - Comportamento do rendimento da bomba em função da vazão de oxidante

Levando-se em conta que a bomba será acionada por uma turbina, também em fase de projeto, e para que possa haver compatibilidade de rotação entre a bomba e a turbina, procurou-se simular o funcionamento da bomba entre 85% e 115% da sua rotação nominal. Os resultados dos cálculos estão mostrados nas Figuras 1 e 2, para valores de rotação variando entre 85% e 115%, como indicado nas curvas.

5. CONCLUSÕES

O modelo de perdas considerou os principais fatores que influenciam o desempenho de

uma bomba centrífuga. Tendo sido construído levando-se em conta dados experimentais, é de se esperar que os resultados obtidos neste trabalho sejam qualitativa e quantitativamente coerentes. A Tabela 2 indica essa qualidade, uma vez que, tanto a geometria básica da bomba como suas características principais de desempenho, são muito próximas das de uma bomba equivalente, já projetada, fabricada e ensaiada, como a do motor RD-109. Fora do ponto de projeto, o modelo prevê corretamente o comportamento da bomba, uma vez que as curvas de desempenho têm as formas usuais, que também podem ser obtidas utilizando-se as relações de similaridade, conforme pode ser visto em Tamashiro (1999). Embora não tenha sido possível a obtenção de dados experimentais da bomba operando fora do ponto de projeto, para fins de comparação, pode-se esperar que o desempenho calculado esteja bem próximo do real, uma vez que o modelo de perdas foi calibrado para esses tipos de aplicações. A pesquisa será continuada no sentido de se calcular o escoamento no interior dos canais para se assegurar que o escoamento seja coerente com o modelo adotado.

Existem diversos procedimentos para o dimensionamento de uma bomba. Este trabalho apresentou um deles. Tem a característica especial de definir a geometria básica de uma bomba similar a uma bomba existente, o mesmo acontecendo com seu desempenho. Desta forma, sua utilização pode resultar no projeto de uma bomba cujo desempenho requerido possa ser alcançado após pouco desenvolvimento em bancos de ensaios.

6. REFERÊNCIAS

- Huzel, Dieter K., Huang, David H., 1992, "Modern Engineering for Design of Liquid-Propellant Rocket Engine", American Institute of Aeronautics and Astronautics, Washington DC, 431p.
- Ovsyannikov, B. V., Borovskiy, B. I., 1973, "Theory and Calculation of Feed Units of Liquid Propellant Rocket Engines", Foreign Technology Division, Ohio, 485p.
- Ovsyannikov, B. V., Celifonov, B. C., 1996, "Theory and Calculation of Screw Centrifugal Pumps", Moscow Aviation Institute, Moscow, 71p.
- Pfleiderer, C., Petermann Hartwig, 1979, "Máquinas de Fluxo", Livros Técnicos e Científicos Editora S.A., 454p.
- Stepanoff, Alexey J., 1948, "Centrifugal and Axial Flow Pumps", John Wiley & Sons, Nova York, 428p.
- Tamashiro, R.Y., 1999, "Simulação Numérica de Bomba Centrífuga para Aplicação em Motor-Foguete a Propelente Líquido", Tese de Mestrado, Instituto Tecnológico de Aeronáutica, São José dos Campos, S.P., 127p.