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Abstract
The inertialess flow of viscoplastic materials through an axisymmetric channel formed by an
abrupt expansion followed by a contraction is studied. Flow visualization experiments were
performed with a Carbopol aqueous solution. The rheological behavior of the solution was
determined with the aid of a rotational rheometer, and it was observed that the viscosity function
is well represented by the Herschel-Bulkley equation. Numerical solutions of the mass and
momentum balance equations were also obtained. In these solutions it was assumed that the
materials behave like a Generalized Newtonian Liquid with a biviscosity function, which mimics
closely the Herschel-Bulkley equation but allows deformation below the yield stress limit. The
flow visualization results showed that flow is observed only in an inner axisymmetric region
whose diameter is approximately twice the one of the inlet and outlet tubes. Outside this region
the flow is stagnant, and a fracture between these two regions is observed. The corresponding
numerical solutions are not capable of predicting the observed flow pattern.
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1. INTR ODUCTION

This work analyzes the flow of viscoplastic materials through an abrupt axisymmetric expansion
followed by an abrupt contraction, as shown in Fig. 1. Expansion and contraction flows are found
in some common engineering situations, such as extrusion processes, multi-size tube flows, and
other. Viscoplastic materials are present in many industrial processes. Examples of viscoplastic
materials are grease, butter, paints, drilling muds, mustard, among others. The main characteristic
of these materials is the presence of an yield stress. Above the yield stress the material behaves
as a liquid, and, below it, as a solid. This behavior leads to an apparent fracture of the material
in some complex geometries, which may have strong influence in pressure drop and heat transfer
results.

The mechanical behavior of viscoplastic materials is commonly given by the Generalized
Newtonian (GNL) constitutive equation (Bird etal. , 1987), namely, ¿¿¿¿¿ = ·(_)_ ____, where ¿¿¿¿¿ is the
extra-stress tensor, _____ is the rate-of-deformation tensor, defined as gradv + (grad v) T , v being
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Figure 1:The geometry .

the velocity vector and · is the viscosity function, given by the Herschel-Bulkley equation (Bird
etal. , 1987).

1.1 Literature review
An overview of the rheology and flow of viscoplastic materials was presented by Bird etal.

(1983), where some simple flow situations were analyzed. The flow of Bingham materials through
tubes was analyzed in the literature by some authors (Bird et al., 1987, Vradis et al., 1992). In the
core region of the tube the stress is lower than the yield value. Inside this region, called plug flow
region, the fluid behaves as a solid material. The flow of Bingham materials through an 1 £ 2
abrupt expansion was analyzed numerically by Vradis and Ötügen (1997). It was observed that
the reattachment length decrease with yield stress and increase with Reynolds number. Naccache
and Souza Mendes (1997) analyzed numerically the flow pattern of Bingham materials through
abrupt expansions as a function of Reynolds number, yield stress and expansion ratio. It was
noted that the reattachment length increases with Reynolds number, decreases with yield stress
and is practically independent of the expansion ratio. An experimental study of the flow through
axisymmetric expansions was performed by Pak etal. (1990). This work analyzes the influence
of Reynolds number on separation zones and reattachment length of Newtonian, purely viscous
and viscoelastic fluids in 1 £ 2 and 1 £ 2:7 abrupt axisymmetric expansions. It was observed
that the reattachment length for purely viscous fluids is almost the same as for Newtonian fluids.
For laminar flows the effect of elasticity is to decrease the reattachment length, while in turbulent
flows the opposite trend is observed.

One important discussion in the literature of viscoplastic materials is the numerical diffi-
culty in using the von Mises yield criterion in the viscosity function. Essentially two types of
modification of the Bingham viscosity function have been proposed to handle this, namely, the
bi-viscosity model (Lipscomb and Denn, 1984, Gartling and Phan-Thien, 1984, O’Donovan and
Tanner, 1984), and Papanastasiou’s model (Papanastasiou, 1987). Both modifications have been
used successfully in numerical simulations of different complex flows (e.g., Ellwood et al., 1990,
Abdali et al., 1992, Beverly and Tanner, 1992, Wilson, 1993, Wilson and Taylor, 1996, Piau,
1996). Similar equations for Herschel-Bulkley viscosity function can be obtained (Macosko,
1994).

Moreover, Lipscomb and Denn (1984) observed that yielding and flow must occur everywhere
in complex flows in confined geometries, which is generally inconsistent with the classic Bingham
plastic model. Wilson (1983) showed that, for suitably large yield stresses, yield surfaces can
exist in confined complex geometries if the biviscosity law is employed, even when the Bingham
plastic limit is approached. Piau (1996) explained that, if some deformation in the plug-flow region
is allowed (either elastic or viscous), yield surfaces are possible whenever there are regions of
deformation (or deformation rate) low enough as to require stress levels below the yield stress to
be realized.
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Recently, Barnes (1999a, 1999b) performed a comprehensive review about yield stress mate-
rials, reviving the argument that yield stress actually does not exist. He shows, for a large number
of materials typically classified as viscoplastic, that when careful measurements are performed
below the “yield stress”, it is found that flow actually takes place, and the viscosity function looks
like the bi-viscosity model. However, an apparent yield stress can exist as a useful mathematical
description of limited data, over a given range of flow conditions.

The present work analyzes numerically and experimentally the inertialess flow of a vis-
coplastic material through an axisymmetric sudden expansion and contraction. The main goal is
to evaluate the performance of the GNL constitutive equation for the flow of viscoplastic materials
in this complex flow situation, by comparing the numerical predictions with flow visualization
results. In the numerical simulation, the governing equations were discretized with the aid of the
finite volume method. A modified bi-viscosity model was used to avoid the numerical difficulty
of the Von Mises criterion. Velocity and pressure fields were obtained numerically. In the exper-
imental study, flow visualizations for two values of the geometrical parameter are performed, for
a 0.5% Carbopol aqueous solution.

2. NUMERICAL MODELING

The flow studied is steady and axisymmetric and enters the large tube with a developed velocity
profile. The fluid is modeled by the GNL constitutive equation and the viscosity function is given
by the Herschel-Bulkley model (Bird etal. , 1987).

For the steady flow of a viscoplastic material through a duct, the dimensionless mass and
momentum equations are:

divv0 = 0 (1)

gradv0¢v 0 = ¡ grad p0+
2„u0

R e
div(· 0gradv0) (2)

where v0 = v=R i _c and p0 = p=‰(Ri _c)2. The dimensionless coordinates are x0 = x=Ri and
r 0 = r=R i . The characteristic shear rate _c is taken as equal to the developed value of the shear
rate at tube wall at the upstream tube, given by (Soares etal. , 1997):
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¿Ri ;f d ¡ ¿0
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In this equation r 0
0 = ¿0

0 = ¿0=¿Ri is the dimensionless yield stress. The quantities ¿Ri , „u and Ri

are the shear stress at wall, mean velocity and radius of the smaller tube (radius Ri ), respectively.
The characteristic viscosity is chosen as the viscosity at the characteristic shear rate, · c = ·(_ c)
and the Reynolds number is defined as R e· 2‰„uRi =· c.

The boundary conditions are the usual no-slip condition at walls, the symmetry condition at
the centerline and locally parabolic flow at the outlet. The flow was solved only for the central and
the downstream tubes. At the inlet of the central tube, the flow was considered hydrodinamically
developed and the velocity profile is given by:
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(4)

As discussed previously, a modified bi-viscosity modelwas used for the viscosity function:
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Figure 2:Schematics oftheexp erimental apparatus
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(5)

where _0 · _=_ c, · 0 · ·=· c and ¿0
0 · ¿0=¿Ri are the dimensionless shear rate, viscosity and

yield stress, respectively. We adopted · 0
large = 1000(Beverly and Tanner, 1992). Then, _0

small =

¿0
0=(1000¡ (1¡ ¿ 0

0)_
0n¡ 1
small )’ ¿ 0

0=1000

2.1 Numerical solution
The conservation equations of mass and momentum are discretized by the finite-volume

method described by Patankar (1980). Although the Reynolds number values were kept below
0.01 for all cases, the inertia terms were kept in the momentum equations. Staggered velocity
components are employed to avoid unrealistic pressure fields. The SIMPLE algorithm (Patankar,
1980) was used, in order to couple the pressure and velocity. The resulting algebraic system is
solved by the TDMA line-by-line algorithm (Patankar, 1980) with the block correction algorithm
(Settari and Aziz, 1973) to increase the convergence rate.

The mesh utilized is uniform per zones in the axial and radial directions. For the cases with
L0=Do = 0:5, a 102£ 82 mesh was used and for the other cases the mesh used was equal to 122£
82. The downstream tube length was fixed equal to 10Ri , in order to avoid the influence of the
outlet boundary on the flow. To validate the numerical solution, some tests are performed. The
error obtained for the product of the friction factor and the Reynolds number with respect to the
exact value (fR e= 8_cD =„v), for a fully developed Newtonian flow at the downstream tube was
equal to 5%, while for the Herschel-Bulkley material the error was always less than 2%.

3. EXPERIMENT AL APP ARA TUS

A schematic view of the experimental apparatus is shown in Fig. 2. A single-piston/cylinder
pump was used to drive the flow through the transparent plexiglas-made expansion/contraction.
The transparent fluid was mixed with light reflective particles to allow the flow visualization. The
flow of the particle-laden fluid was recorded. Afterwards, the movie was digitized and the images
processed with a computer. The particles were highlighted and the background removed with
software to obtain the streamlines.

The pumping system consists of an actuator that pushes a piston in a cylinder. The two
Aluminum cylinders used are 600 mm long and have diameters of 57.3 mm and 12.7 mm. The
corresponding flow rates are respectively 361 mm3/s for the viscoplastic fluid and 17.7 mm3/s
for the Newtonian case. The Reynolds number of the flow was kept below 0.01 for all cases, to
assure no inertial effects. A bypass valve was used to remove air bubbles from the transparent
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Figure 3:Velo city vectors. r 0
0 = 0 (Newtonian);L=D = 0: 5

manifold before starting the videotape.
The expansion/contraction chamber was made of 57.7 mm diameter transparent plexiglas

tube and has an overflow chamber on top to hold the fluid. The flow was vertical and upwards.
We used a black and white CCD camera, model KP-M1 (Hitachi Denshi, Ltda.), coupled to either
a 12.5-75 mm /f1.8 (Toyo Optics, Japan) or a 18-108mm/f2.5 (Computar, Japan) zoom lens,
connected to a good quality standard VCR. The light source is a 300 W Kodak Ecktagraphic
IIIE-plus slide projector (Kodak Company, USA). In the projector slide chamber, an Aluminum
slide 1.6 mm thick and having a 1.1 mm wide vertical slot was used to create a plane of light
about 2 mm wide. The camera was positioned perpendicular to this plane of light. The videotape
was digitized with a Power Mac 8500/120 (Apple Computer Inc.) and the public domain NIH
Image v. 1.6.1 program (National Institutes of Health USA).

3.1 Fluids
The measurements were done for two different fluids, a polymeric aqueous solution (vis-

coplastic) and a polyethylene glycol (Newtonian). All concentrations were measured by weight.
The 0.5% Carbopol 676 (B. F. Goodrich Chemical Co., USA) aqueous solution was neutralized
with 0.04% Sodium Hydroxide (Rhos Ltda., Brazil). The viscosity of this solution is highly de-
pendent on its pH, which was kept at a value of 6.0. The viscosity for this solution was observed
to decrease sharply with increasing shear rate. For the Carbopol solution both the viscosity and
shear stress fit well to a Herschel-Bulkley model. The rheological properties obtained using a
rotational rheometer (Physica UDS 200) are ¿0 = 78:3 Pa and K = 111Pa.s and n = 0:4. The
fluid density is essentially equal to that of water, i.e., ‰ = 1000kg/m3. For the Newtonian fluid
we used an aqueous solution of 55% polyethylene glycol (Polietileno glicol 6000, Vetec Ltda.,
Brazil). This concentration is close to the saturation point at room temperature. We measured the
viscosity of this solution and found a constant value for a wide range of shear rates. The density
was found to be 1090 kg/m3 for this Newtonian solution. Both solutions were transparent, and
the visualization was possible by mixing light reflecting Pliolite particles (GoodYear Inc, USA)
in the solutions. The particle diameters were between 149 and 250 „ m and the concentrations in
the solutions ranged between 0.08 and 0.12%.

4. RESUL TS AND DISCUSSION

As stated earlier, all the numerical and experimental results obtained pertain to negligible inertia
(R e = ‰„vD i =· c < 1 £ 10¡ 2 ). Two different values of the ratio Lo=Do were analyzed, viz.,
Lo=Do = 0:5 and 1. The results for larger values of Lo=Do are qualitatively similar to the ones
obtained for Lo=Do = 1.

Figures 3–5 show the velocity vectors obtained numerically for Lo=Do = 0:5 and for r 0
0 =

0 (Newtonian);0: 14 and 0.7. The flow patterns observed show an interesting structure. In the
downstream tube (radius Ri ), the core region is the region of lowest velocity gradients, and hence
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Figure 4:Velo city vectors. r 0
0 = 0:14;L=D = 0: 5

Figure 5:Velo city vectors. r 0
0 = 0:7;L=D = 0: 5

of lowest stresses. Near the wall, the velocity gradient is larger, and so is the stress. Therefore,
the centerline region is a region where the stress is lower than the yield stress, and the material
move as a solid body. This region is called the plug flow region. The plug flow region increases
with the yield stress, as it can be seen in Figs. 3–5 and 7–9. In the large duct (radius Ro), the
plug region close to the centerline is also present, except close to the expansion and contraction
planes, where the velocity gradients are high. Away from the centerline and adjacent to the tube
wall, there is a region where the velocities are rather small, leading to small velocity gradients and
stresses lower than the yield stress. The non-zero but small velocities in this region is consistent
with the bi-viscosity model. It can be noted that the nearly-stagnant region increases with the
yield stress, as expected. For the Newtonian case, negative values of the velocity indicate a slow
recirculating flow in this region.

Flow visualizations for the viscoplastic material for Lo=Do = 0:5 and 1 are shown in Fig.
6. It can be observed that there is no flow in a large region adjacent to the wall for Lo=Do = 0:5
(left picture). Furthermore, from the movie it can be observed that the velocity profile is rather
flat the core region, with a steep decrease to zero towards the stagnant region. Within our
limited observations, it looks like the velocity profile is discontinuous, i.e., as if internal slip
occurs. This behavior is qualitatively different from that one inferred from the numerical solution,
where the velocity smoothly decreases to zero near this limiting region. Moreover, the stagnant
region observed experimentally is significantly larger than the one predicted by the numerical
approach. For the Newtonian liquid, we have been facing problems of operational nature, and
flow visualization results are not yet available.

Figure 6:Experimen tal streamlinesfor theviscoplastic uid, r 0
0 = 0:14;L=D = 0: 5 and1
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Figure 7:Velo city vectors. r 0
0 = 0 (Newtonian);L=D = 1

Figure 8:Velo city vectors. r 0
0 = 0:14;L=D = 1

The velocity vectors for Lo=Do = 1 and for r 0
0 = 0 (Newtonian);0: 14and 0.7 are shown in

Figs. 7–9. Flow patterns obtained experimentally for the viscoplastic material and Lo=Do = 1 is
shown in Fig. 6. It can be observed that the flow patterns are different from that ones obtained for
Lo=Do = 0:5. In these cases, all the fluids flow in similar patterns, with no stagnant region, not
even for the viscoplastic materials. For this case, the numerical and experimental observations
are in good agreement.

5. CONCLUSIONS

This paper investigates the performance of the GNL constitutive equation for the flow of
viscoplastic materials in a complex geometry, namely, an axisymmetric duct consisting of an
expansion followed by a contraction. The governing equations of mass and momentum are
solved numerically via a finite-volume technique. The numerical solution gives the velocity,
viscosity and pressure fields. The flow pattern was also obtained experimentally.

It is observed that the flow pattern obtained numerically with the bi-viscosity model agree
well with the experimental ones only for larger values of Lo=Do. Experimental observations
indicate that there is a flow pattern transition for Lo=Do ’ 1 . Below this value, the viscoplastic
material starts to fracture near the core region of the flow. The numerical solution was not able
to predict this behavior. The results obtained numerically give a smooth velocity profile through
the radius of the duct. For Lo=Do > 1 all the materials yield the same qualitative flow pattern,
no fracture being observed. The numerical predictions for this case are in good agreement with
the experimental observations.
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Figure 9:Velo city vectors. r 0
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