SOLDA A LASER EM CHAPAS FINAS DE AÇO BAIXO CARBONO

Luiz Carlos Vicentin Maria Clara F. Ierardi Amauri Garcia Universidade Estadual de Campinas, Departamento de Engenharia de Materiais, CP 6122, 13083-97, Campinas, SP, Brasil. E-mail vicentin@fem.unicamp.br

Resumo

Foi utilizado um laser pulsado de Nd:YAG para a produção de blanks de aço baixo carbono soldados. Os parâmetros de soldagem adotados asseguraram um cordão de solda com penetração total em toda sua extensão. O bico de gás projetado promoveu a eliminação do plasma e a proteção do cordão de solda da oxidação. A relação entre a microdureza da zona fundida / metal base foi de 1,3. O ensaio de embutimento realizado nas chapas soldadas mostrou que houve uma redução de 9,4% na profundidade da calota em relação à chapa sem solda.

Palavras-chave: Solda a laser, Chapas finas, Laser pulsado, Nd:YAG.

INTRODUÇÃO

Muitas propriedades dos materiais dependem das características estruturais dos mesmos como tamanho de grão, microestrutura dendritica, variações de composição, tensões residuais, corrosão e características que determinam o comportamento mecânico em uso. A otimização de todas estas propriedades no volume inteiro de um componente fabricado não é sempre a melhor solução. Técnicas de modificação superficial emergem como uma alternativa para o melhoramento das propriedades superficiais. Nas últimas duas décadas, modificações controladas da microestrutura ou da composição química próxima à superfície foram alcançadas com a utilização do laser (*cladding, alloying* e tratamento térmico no estado sólido), etc [Ierardi,1999 – Gadag,1995]. Tais modificações aumentam a vida útil e a confiabilidade dos componentes, além de prevenir a inicialização de trincas na superfície.

A soldagem a laser oferece uma combinação única de alta velocidade e precisão de soldagem e provê uma consistente integridade de soldadura e baixa distorção de calor quando comparada com soldagem convencional. Esta combinação de vantagens é particularmente atraente para a indústria automobilística, até mesmo quando comparada a outras técnicas de soldagem alternativas como solda com feixe de elétrons [Riches, 1993 - Wang, 1194]. A solda a laser é utilizada para a fabricação de componentes automotivos como: transmissão, alternadores, injetores de combustível, filtros de combustível e ar e particularmente a solda a laser de chapas finas de aço baixo carbono (*blanks*) usadas na indústria automobilística. Um *blank* inclui duas ou mais chapas finas de aço com materiais idênticos ou dissimilares, e diferentes espessuras soldadas. As vantagens principais deste processo são: método efetivo de fabricação para alguns componentes do corpo do carro, habilidade para unir materiais de espessuras diferentes, uso de material dissimilar, fusão e zona afetado pelo calor (ZTA)

estreitas, associadas com pequena distorção e o alto grau de automação [Riches, 1993 – Saunders, 1996]. Desvantagens incluem custos elevados relacionados com a preparação da solda e o equipamento de laser.

Com o aumento da potência dos equipamentos de laser de Nd:YAG e com a possibilidade em transmitir o feixe de laser por um cabo de fibra ótica é cada vez mais viável o uso do laser de Nd:YAG na indústria automobilística [Riches, 1993]. A qualidade da solda a laser depende geralmente de uma reunião de exigências, como: geometria de solda, penetração completa e pequena zona afetada pelo calor entre outras. A solda laser envolve vários parâmetros de controle como: potência, velocidade de deslocamento do feixe, desfocagem e proteção do cordão. Estes parâmetros afetarão a profundidade de penetração, forma e estrutura final da zona fundida (ZF), que em troca influenciará nas propriedades mecânicas da solda [Baysore, 1995 - Batahgy, 1997]. O objetivo do trabalho presente é estudar a estampabilidade das chapas finas de aço soldadas com laser usadas pela indústria automobilística.

PROCEDIMENTO EXPERIMENTAL

Materiais

As chapas de aço baixo carbono utilizadas para a confecção dos *blanks*, com composição química descrita na Tabela I, podem ser classificadas como EEP (estampagem extraprofunda, resistente ao envelhecimento) de acordo com a norma NBR5915/1984.

Foram preparados corpos de prova com as chapas de aço com espessura de 1 mm, largura de 40 mm e comprimento de 150 mm, sendo que uma de suas laterais foi usinada para que as mesmas tivessem um bom contato. Este contato proporcionou um *GAP* entre os corpos de prova menor que 0,1 mm, o que não interferiu na qualidade do cordão de solda pela falta de material. Na Figura 1 é visualizado o suporte desenvolvido para a fixação das chapas. O suporte mostrou-se eficiente, pois as chapas soldadas não apresentaram distorções.

Para prevenir a contaminação e eliminação do plasma utilizou-se o gás argônio, com vazão de 20 l/min, através de um bico injetor como se pode observar na Figura 2, mantendo-se assim a qualidade da solda.

%C	%S	%Mn	%Si	%P
0,08	0,010	0,21	0,13	0,019

Tabela I – Composição química do aço (wt %).

Figura 1 – Suporte de fixação.

Figura 2 – Bico injetor de gás.

Fonte laser

Um laser pulsado de Nd:YAG com potência média de 300 W, pertencente ao CTM em São Paulo, foi utilizado para a realização deste trabalho. Os parâmetros de operação do laser adotados para a realização dos experimentos estão descritos na Tabela II.

Intensidade do pulso	14 J
Duração do pulso	3,5 ms
Desfocagem	0 mm
Distância focal da lente	150 mm
Diâmetro do feixe laser	0,6 mm
Velocidade de soldagem	4,8 mm/s
Frequência de pulsação	20 Hz
Sobreposição	80 %

Tabela II - Parâmetros de soldagem.

Microscópio óptico e eletrônico de varredura

Depois de soldados os corpos de prova foram submetidos a cortes transversais na direção de soldagem. Foram examinadas as microestruturas da região fundida e ZTA, através do microscópio ótico e microscópio eletrônico de varredura (MEV). A microdureza transversal ao cordão de solda foi analisada através do medidor de microdureza com carga de 20g acoplado ao Microscópio Ótico *Neophot* 32.

Estampabilidade

O ensaio de embutimento consiste em deformar, com um penetrador provido de um extremo esférico, um corpo de prova com lubrificante recomendado pela norma ASTM E 643-84. O corpo de prova é preso a uma matriz e a um anel de fixação, até ocorrer o início da ruptura e neste momento, determina-se a profundidade da calota produzida. Foram realizados seis ensaios para a determinação do índice de embutimento (IE).

RESULTADOS E DISCUSSÕES

A avaliação da qualidade da solda baseou-se na análise de profundidade de penetração total da zona fundida e superfície do cordão de solda. Na Figura 3 é apresentada uma micrografia da secção transversal do cordão de solda obtido com os parâmetros da Tabela II. Pode ser visto que o desenvolvimento do cordão de solda é essencialmente simétrico sobre o eixo do feixe laser. A velocidade de deslocamento do feixe laser pode ser considerada baixa, devido às limitações do equipamento utilizado. A profundidade de penetração diminui nitidamente com variações na intensidade e duração do pulso. Uma redução de cerca de 50% foi observada quando a intensidade do pulso foi diminuída para 10 J e a duração do pulso foi aumentada para 4 ms, como pode ser visto em Figura 4.

Na Figura 5 é observada uma micrografia típica de soldagem a laser. Na Figura 5a, interface metal base / ZTA, visualiza-se claramente os grãos de ferrita alongados na direção da laminação a frio, como também a microestrutura recozida da ZTA, que consiste em grãos de ferrita com carbonetos nos limites de grão. A microestrutura da ZF, mostrada na Figura 5b, é constituída essencialmente de ferrita fina acicular e bainita.

Figura 4 - Micrografia da secção transversal do cordão de solda a laser, parâmetros de soldagem da Tabela II, alterando-se a

intensidade (10 J) e duração (4 ms) do pulso.

Figura 5 – Micrografia de solda a laser: (a) material base e zona afetada pelo calor (ZTA) e (b) zona fundida (ZF).

Para caracterizar a largura da zona de solda, a microdureza foi medida ao longo da secção transversal, com resultados típicos apresentados na Figura 6. Os dados informados são a média de quatro resultados individuais. Valores até 30% maiores que a dureza encontrada no substrato (150 - 160 HV) foram medidos na zona de fusão da solda. Medidas de microdureza ao longo de uma linha vertical no centro da zona de fusão indicaram que o valor máximo observado (aproximadamente 200 HV) é essencialmente constante ao longo da solda. A plasticidade das partes soldadas a laser pode ser avaliada pela relação entre zona fundida / metal base e, de acordo com a literatura, uma relação máxima de 2,0 foi estabelecida como aceitável [Baysore, 1995] (no caso presente esta relação é aproximadamente 1,3).

Figura 6 - Microdureza típica em soldas a laser.

Estampabilidade

O resultado obtido nos ensaios de estampabilidade por estiramento *Erichsen* é apresentado de acordo com a norma ASTM E 643-84 e visualizado na Tabela III. Na Figura 7 pode-se visualizar o gráfico de um dos ensaios de *Erichsen* realizados neste trabalho. Este gráfico determina o índice de embutimento para um dos testes executados. Na Figura 8 visualiza-se a ruptura das chapas soldadas quando submetidas ao ensaio de embutimento.

Identificação do material	Chapas de aço baixo carbono EEP
Espessura	1 mm
Método da determinação de ruptura	Computadorizado
Numero de teste	6
Tipo de lubrificação	NIKAL
Valor médio do IE sem solda	11,06 mm
Valor médio do IE	10,02 mm
Carga média máxima (se souber)	170 kgf
Força nos corpos de prova	Proporcional
Força de fixação nos corpos de prova (se souber)	não

A profundidade da calota foi diminuída 9,4% pela presença do cordão de solda a laser (não soldadas 11,06 mm e soldadas 10,02 mm). Esta redução em ductilidade exibida pelas chapas soldadas pode ser considerada aceitável em termos de conformação. Nos ensaios de embutimento realizados observou-se que a ruptura nos corpos de prova ocorreu transversalmente ao cordão de solda, como mostrado na Figura 8.

Figura 7 – Curva característica do deslocamento do penetrator durante testes de estampabilidade.

Figura 8 - Calota resultante do ensaio de embutimento.

CONCLUSÃO

O laser de Nd:YAG utilizado nos ensaios de solda produziu *blanks* com qualidade e alcançou uma penetração completa do cordão. O bico injetor de gás proveu a supressão do plasma e protegeu o cordão de solda contra a oxidação. A microdureza observada ao longo da secção soldada apresenta uma relação de dureza, zona fundida / metal base de 1,3, indicando que a plasticidade está de acordo com a relação aceitável sugerida na literatura. O ensaio de deformação usado para avaliar a plasticidade indicou uma redução de 9,4% na profundidade da calota pela presença da solda de laser.

REFERÊNCIA BIBLIOGRÁFICA

- Akgun, O. V. e O. T. Inal, J. Mater. Sci., 30, 6097 (1995)
- Batahgy, A. M., *Materials Letters*, **32**, 155 (1997)
- Baysore, J. K., M. S. Williamson, Y. Adonyi and J. L. Milian, *Welding Research Supplement*,
- Gadag, S. P., Srinivasan, M. N. and Mordike, B. L., Mater. Sci. Eng., A196, 145 (1995)
- Ierardi, M. C., A. Garcia, A. R. Costa and R. Vilar, Lasers in Eng., 9, 47 (1999)
- Riches, S. T., Welding and Metal Fabrication, 79, March (1993)
- Saunders, F. I. and R. H. Wagoner, Metall. Mater. Trans., 27 A, 2605 (1996)
- Postacioglu, N., P. Kapadia and J. M. Dowden, *J. Phys. D: Appl. Phys.*, **30**, 2304 (1997) 345, October (1995)
- Yoshida, M., Y. Yamasaki, S. Kabasawa and M. Ono, NKK Technical Review, No. 72, 28
- Wang, P. C. and K. M. Ewing, *Welding Research Supplement*, 210, September (1994) (1995)