COEFICIENTE DE TRANSFERÊNCIA DE CALOR NAS INTERFACES METAL/MOLDE E MOLDE/AMBIENTE RELATIVOS A SOLIDIFICAÇÃO DE LIGAS DO SISTEMA Sn-Pb EM MOLDES DE COBRE

João de Deus da Costa Alves Fernando Antônio de Sá José Maria do Vale Quaresma Amauri Garcia

Universidade Federal do Pará, Centro Tecnológico, Departamento de Engenharia Mecânica, 66.075-970, Belém, PA, Brasil. E-mail:jmdovale@ufpa.br

Resumo

O comportamento dos coeficientes de transferência de calor atuantes na interface metal/molde e molde/ambiente foi determinado através do método que confronta os perfis térmicos teórico e experimental, utilizando-se de um sistema de fundição com fluxo de calor unidirecional para o sistema Sn-Pb. Os perfis térmicos experimentais foram obtidos através de termopares instalados nas regiões de interesse, e seus resultados comparados com os resultados gerados por um modelo numérico baseado na técnica de diferenças finitas devidamente aferido em trabalhos anteriores. Bom acordo foi obtido entre as curvas experimentais e simuladas.

Palavras Chave: Condutância Térmica Metal/Molde e Molde/Ambiente; Condições de Solidificação; Espessura do molde e Modelagem Matemática.

1. INTRODUÇÃO

Sob o ponto de vista físico, a solidificação é um processo de mudança de fase no qual um metal puro ou uma liga metálica passa do estado líquido para o estado sólido. Essa mudança ocorre envolvendo troca de calor e massa, super resfriamento, liberação de calor latente e mudanças nas propriedades termofísicas das fases. Sendo a fase líquida mais energética que a fase sólida, para que haja a mudança de estado, é necessário que se retire energia do sistema metal/molde aumentando as forças coesivas entre os átomos do metal. Essa energia é o calor latente de solidificação cujo significado é a diferença na energia térmica (entalpia) entre os dois estados.

A solidificação é, portanto, um processo que envolve a transferência de calor, e a velocidade que esta ocorre interfere diretamente nas propriedades do metal solidificado. Portanto, a análise do processo de transferência de calor, a identificação das variáveis significativas, o estabelecimento e a determinação dos parâmetros de solidificação tornam-se excencialmente importantes tanto sob o ponto de vista teórico quanto prático.

O presente trabalho estuda o comportamento dos coeficientes de transmissão de calor e dos perfis térmicos nas interfaces metal/molde e molde/ambiente de ligas do sistema Sn-Pb por dois métodos: experimental e matemático.

Dada a importância da solidificação como meio de produção, e da necessidade da obtenção de materiais destinados a atender a crescente demanda industrial que vai desde a fabricação de semicondutores a monocristais de alta precisão, é que se tem direcionado

esforços de pesquisa nesta área, cujos resultados tem trazido relevantes contribuições tecnológicas à engenharia de materiais e a indústria.

2. ANÁLISE MATEMÁTICA DA SOLIDIFICAÇÃO

Tendo em vista a natureza do processo de solidificação que ocorre segundo uma transmissão de calor do tipo não estacionária, a análise matemática do problema conduz a equações diferenciais de soluções complexas . A literatura cita "Métodos Analíticos Exatos" e " Métodos Analíticos Aproximados" para solução das equações, entretanto tais métodos admitem condições de contorno que levam a soluções limitadas sob o ponto de vista prático porque afastam o problema de sua realidade física. Por outro lado, métodos numéricos, como o das diferenças finitas (MDF), discretizam o tempo e o espaço obtendo-se soluções tão refinadas quanto desejado. Neste trabalho, o MDF foi utilizado para simular as curvas representativas dos parâmetros de solidificação para posterior comparação com resultados experimentais.

A análise da transferência de calor por MDF nos sistemas metal/molde e molde ambiente durante a solidificação foi desenvolvida a partir da Equação Geral da Condução de Calor.

2.1. Método das Diferenças Finitas

Aplicando-se à Equação Geral do Calor as aproximações por diferenças finitas, e utilizando-se a analogia físico numérica entre um sistema térmico e um sistema elétrico na qual se transforma a malha de diferenças finitas de elementos térmicos à elementos elétricos; chega-se à equação (1) [Quaresma, 1999]; [Spim Jr., J.A. & Garcia, A., 1995]; [Santos, C.A.; Spim Jr., J.A.; Quaresma, J.M.V. & Garcia, A., 1996]

$$T_{i}^{n+1} = \left(\frac{\Delta t}{\tau_{Qi}}\right) T_{i+1}^{n} + \left(1 - \frac{\Delta t}{\tau_{QDi}}\right) T_{i}^{n} + \left(\frac{\Delta t}{\tau_{Di}}\right) T_{i-1}^{n}$$
(1)

onde, $\tau_{Qi} = carga$; $\tau_{Di} = descarga$; e $\tau_{Qdi} = carga / descarga$

2.2. Interface molde/ambiente

O valor da resistência térmica na interface Molde Ambiente é dada por:

$$R_{M/A} = \frac{1}{(h_R + h_C)A_T}$$
(2)

onde, h_R = coeficiente radiativo [W/m².K]; h_C = coeficiente de convecção do gás [W/m².K];

e A_T = área de troca térmica [m^2].

Para o cálculo do coeficiente radiativo tem-se que:

$$h_{R} = \sigma \cdot \varepsilon \left(T_{EM} + T_{0} \right) \left(T_{EM}^{2} + T_{0}^{2} \right)$$
(3)

onde, σ = constante de Stefan-Boltzman [=5,672x10⁻⁸ W/m².K⁴]; ϵ = emissividade do material do molde ; T_{EM} = temperatura externa da superfície do molde [K]; e T₀ = temperatura ambiente [K].

Para o cálculo do coeficiente de convecção sabe-se que:

$$h_{\rm C} = \frac{k_{\rm gas} N_{\rm u}}{\chi} \tag{4}$$

na qual:

$$N_{u} = C(G_{R}.P_{R})^{n} , \qquad \text{Número de Nusselt}$$

$$G_{R} = \frac{g.\gamma.\chi^{3}(T_{EM} - T_{0})}{\eta_{gas}^{2}}\rho_{gas}^{2} , \qquad \text{Número de Grashof}$$

$$P_{R} = \left[\frac{\eta}{.c}\right] , \qquad \text{Número de Prandtl}$$

$$(5)$$

onde,
$$\eta$$
 = viscosidade dinâmica do fluido de refrigeração [kg/m.s]; c = calor específico do fluido de refrigeração [J/kg.K]; ρ_{gas} = massa específica do fluido de refrigeração [kg/m³]; k = condutividade do fluido de refrigeração [w/m.K]; χ = dimensão característica da superfície, referente ao percurso feito pelo fluido de refrigeração ao passar pela superfície do corpo [m]; γ = coeficiente de expansão térmica volumétrica do fluido de refrigeração, que para gases pode ser aproximado por (γ = 1/T₀)[K⁻¹]; e g = aceleração da gravidade [9,81 m/s²].

Para um estudo onde o fluxo de fluido pode ser considerado laminar e a superfície do corpo na posição vertical, o valor do produto $[G_R.P_R]$ deverá variar no intervalo $[10^4 a 10^9]$ e para o cálculo do Número de Nulsselt [C = 0,59; n = 0,25]. Por outro lado, as propriedades do fluido de refrigeração, como o ar, variam com a temperatura **[Benjan,1993; Poirier,1994]**

Considera-se que a temperatura externa da parede do molde aumenta consideravelmente durante o processo, para a interface molde/ambiente, pode-se estimar por cálculos analíticos o valor de h_{amb} , sendo dado por:

$$\mathbf{h}_{\mathrm{amb}} = \mathbf{h}_{\mathrm{rad}} + \mathbf{h}_{\mathrm{conv}} \tag{8}$$

onde:

h_{amb} = coeficiente de transferência de calor da interface molde/ambiente dado em W/m".K;

 h_{rad} = coeficiente de transferência de calor por radiação;

 h_{conv} = coeficiente de transferência de calor por convecção.

2.3. Interface metal/molde

A transferência de calor na interface metal/molde, devido sua importante influência na velocidade de solidificação e nas taxas de resfriamento de fundidos, tem sido alvo de inúmeras pesquisas. Vários trabalhos foram desenvolvidos objetivando caracterizar o mecanismo físico da transferência de calor entre as superfícies de contato. [Prates/Biloni,1972; Ho/Pehlke,1984; Prabhu et alli,1992; Wu et alli,1992].

O fluxo de calor através da interface metal/molde é dado por:

$$q = h_i A_t \left(T_{\text{metal}} - T_{\text{molde}} \right)$$
(9)

onde A_t é a área de troca térmica [m"]; sendo que o valor do coeficiente de transferência de calor na interface metal/molde (h_i) é variável durante o processo, necessitando de métodos particulares para sua determinação tais como: a) Cinética de Solidificação Unidirecional Controlada, b) Medidas de Espaçamento Dendrítico Secundário, c) Medida de Temperatura e Vazão em Moldes Refrigerados e d) Confronto de Perfis Térmicos Teóricos / Experimentais via Computador, dos quais adotou-se o último como o método utilizado ao longo do trabalho.

A resistência térmica metal/molde (R_i)depende de uma análise do conjunto de resistência térmicas atuantes no sistema metal/molde, sendo determinada por:

$$\mathbf{R}_{i} = \frac{1}{\mathbf{A}_{t} \cdot \mathbf{h}_{i}} \tag{10}$$

A figura 1 mostra as interfaces citadas em 2.1 e 2.2. [Quaresma, 1999]

Figura 1. Ilustração das interfaces Metal/Molde e Molde/Ambiente [Quaresma, 1999]

3. TÉCNICAS EXPERIMENTAIS

3.1. Ligas utilizadas

Foram utilizadas as seguintes ligas do sistema Sn-Pb: Sn-5%Pb, Sn-10%Pb, Sn-20%Pb e o eutético. As propriedades termofísicas destas ligas se encontram na tabela 1.

Ligas	c _L (J/kgK)	c _s (J/kgK)	ρ_L (kg/m ³)	ρ_{S} (kg/m^{3})	k _L (W/mK)	k _S (W/mK)	L (J/kg)	T _S (°C)	T _L (°C)	T _f (°C)
Sn5%Pb	259	221	7.380	7 7 2 0	33	64	57.120	183	220	232
Sn10%Pb	243	209	7.480	7 840	33	63	56.140	183	215	232
Sn20%Pb	231	200	7.860	8 2 5 0	32	59	52.580	183	202	232

Tabela 1. Propriedades Termofísicas das Ligas [Hammouda, 1992]

3.2. Material do molde

Foi utilizado molde de cobre com geometria regular – plano com secções transversais retangulares com espessuras variando nas medidas: 6, 17, 28, 30 e 50 milímetros, cujas características constam da tabela 2.

Tabela 2.	Características	do Material	do Molde	[Hammouda	, 1992]
-----------	-----------------	-------------	----------	-----------	---------

Mat. molde	k (W mK)	c (J / kgK)	ρ (kg/m≥
cobre	398	384	8960

3.3. Montagem do aparato experimental

Para determinação dos coeficientes nas interfaces, o molde foi disposto com uma das faces atuando como condutora, ou seja um absorvedor de calor, enquanto que as outras faces foram protegidas com material isolante para que o fluxo de calor no sistema fosse

unidirecional. O ensaio consistiu na obtenção dos valores de h_{amb} e h_i e na determinação dos perfis de temperatura durante a solidificação, estando o molde inicialmente mantido a temperatura ambiente. As temperaturas nas interfaces metal/molde e molde/ambiente foram tomadas através de termopares tipo K, com diâmetro de 1,6 mm e bainha de aço inoxidável, estrategicamente localizados conforme mostrado na Figura 2, e em todos os experimentos adotou-se uma sobrefusão de 40°C, acima da temperatura liquidus da liga. O registro dos perfis térmicos foi feito com o auxílio de um aparelho coletor de dados Almemo, modelo 2290-8 fabricação Ahlborn Mess, que dispõe de 5 canais de entrada para coleta de temperaturas em 5 pontos distintos, e de dois canais para saída de dados. Utilizou-se 3 canais para coleta das temperaturas nos pontos indicados na Figura 2 segundo o ciclo de leitura igual a 1 segundo; os dados coletados foram transferidos ao computador para obtenção das curvas mostradas nas Figura 3 e 4, plotadas usando-se como software o Oringin 3.11.

Figura 2 – Esquema ilustrativo do sistema metal/molde. (A) vista superior evidenciando o plano de calor da leitura térmica, a posição do termopar no molde, identificando a medida da espessura do molde de cobre X variável ao longo da experiência. Em (B), exemplifica-se para x = 50 mm, no corte A-A, as posições e profundidades dos termopares: (1) para interface molde/ambiente, (2) para interface metal/molde e (3) no metal; evidenciando o molde, a câmara de vazamento, as paredes refratárias e funil de vazamento [Quaresma, 1999].

4. ANÁLISE, RESULTADOS E DISCUSSÃO

Na figura (3), em (3a) e (3b) encontram-se representados os perfis térmicos experimentais e simulados para ligas de Sn-10%Pb, onde pode-se notar que para espessura de 6mm ocorre uma saturação imediata do molde; e para espessura de 50mm observa-se que a saturação do molde ocorre de modo mais progressivo resultando em um menor tempo de solidificação. Por outro lado, a comparação dos perfis térmicos indicam que para moldes de paredes finas tem-se boa molhabilidade do molde pelo metal provocada pelo contato mais íntimo entre eles do início ao fim do processo, denotando que a camada inicial solidificada foi muito delgada e não se opôs a pressão metalostática do metal líquido remanescente, que a empurra de encontro ao molde, provocando seu aquecimento brusco sem o conseqüente resfriamento do metal. A figura (3c) representa o comportamento de h_i evidenciando-se a correlação entre as curvas para as cinco espessuras experimentadas, nas quais os coeficientes de transferência de calor na interface metal/molde variam com o tempo de forma bastante acentuada nos instantes iniciais da solidificação, havendo neste momento inicial significativa diferença entre os coeficientes obtidos para o molde de menor espessura na ordem de 57%.

Na figura (4), comparando-se as curvas dos perfis térmicos das ligas mais diluída (4a) e mais concentrada (4b), observa-se maiores taxas de retirada de calor para a liga mais diluída, com maior intervalo de solidificação (*mushy zone*), este fato está bem retratado na figura (4c) onde pode ser observado que a razão entre o h_i da liga com 5% Pb e 10% Pb é de 87%, enquanto que a razão entre o h_i da liga com 10% Pb e 20% Pb é de 53%, isto é, a razão entre as composições na ordem de 50% não reflete como regularidade nos valores de h_i , fato que pode ser interpretado como presença de gaps de ar crescentes na interface meta/molde, como função do teor de soluto da liga. Esta idéias leva ao seguinte raciocínio, o de que a pressão metalostática apesar de presente não é suficiente para vencer a resistência da parede solidificada nos instantes iniciais da solidificação.

Comparando-se os perfis térmicos para as ligas 5% Pb (4a) e 20% Pb (4b), observa-se que tanto para a interface metal/molde, quanto para a interface molde ambiente, as temperaturas obtidas no caso da liga 5% Pb foram sempre maiores doque no caso da liga 20% Pb; tal fato decorre da maior molhabilidade do molde pelo metal que ocorre na liga mais diluída como conseqüência da formação de um gap menor verificado na interface metal/molde, para esta composição devido a sua maior fluidez, e ainda pela menor reação da espessura inicial solidificada exercida contra a pressão metalostática e, como era de se esperar, as curvas de aquecimento tanto do molde como da interface molde/ambiente apresentam perfis térmicos superiores para a liga mais diluída, dando conta de que o molde se aquece mais, de tal sorte que os coeficientes de transferência de calor nesta interface (h_{amb}) apresentam formato como os expressos pelas curvas da figura (5c).

Comparando-se os perfis térmicos para uma liga com 10% Pb quanto a solidificação segundo moldes de espessuras variáveis, nas figuras (6a) e (6b) observa-se que há um súbito crescimento das temperaturas medidas no molde e externamente a este quando se trata da liga mais diluída (6a), e quando se trata da liga mais concentrada o aumento das temperaturas se processa de maneira mais suave, entendendo-se que este fenômeno decorre da formação de menores gaps, na interface metal/molde, no primeiro caso nos quais a pressão metalostática empurra com mais facilidade a fina camada de metal solidificada contra o molde. Tal consideração está compatível com os resultados obtidos quanto ao comportamento do (h_{amb}) mostrado na figura (6c), onde a correlação entre estes, obtidos para cinco espessuras do molde, mostram claramente que os maiores valores obtidos são aqueles que correspondem às menores espessuras do molde.

FIGURA 3 – Confronto de perfis térmicos teóricos e experimentais para liga Sn-10%Pb vazada com superaquecimento $\Delta T = 40$ °C em moldes de cobre com espessuras (a) 6 mm, (b) 50 mm, e a correlação das curvas que representam h_i (c) para cinco espessuras de molde.

FIGURA 4 - Confronto de perfis térmicos teóricos e experimentais para liga Sn-Pb, com espessuras 50 mm, superaquecimento $\Delta T = 40$ °C para composição (a) 5%Pb e (b) 20%Pb, e a correlação entre as curvas que representam (c) h_i obtidas para três composições 5%; 10% e 20%Pb da liga.

FIGURA 5 - Perfis térmicos experimentais para ligas (a) Sn-5%Pb; (b) Sn-20%Pb, em moldes com 50 mm de espessura; e a correlação das curvas que representam h_{amb} .

FIGURA 6 – Perfis térmicos experimentais para ligas Sn–10%Pb em moldes de espessuras (a) 6 mm e (b) 50 mm; e a correlação das curvas que representam h_{amb} .

5. Conclusão

- a) A quantidade de calor retirada do metal pelo molde é maior para moldes mais espessos, sendo o aquecimento destes moldes ocorre de maneira mais suave doque no caso dos moldes menos espessos, em decorrência tanto da melhor molhabilidade quanto de menores *gaps* de ar que ocorrem para os moldes de menores espessuras, tornando evidente a considerável influência da espessura do molde nos valores dos coeficientes de transferência de calor na interface M/M;
- b) As ligas mais diluídas, devido maior fuidez, possibilitam melhor molhabilidade do molde pelo metal e a formação de menores *gaps* de ar na interface metal/molde, daí termos encontrado para estas ligas maiores valores dos coeficientes de transferência de calor naquela interface tanto no início, quanto no decorrer do tempo após o vazamento; e
- c) Encontrou-se correlações para as curvas dos coeficientes de transferência de calor nas duas interfaces estudadas, e tanto a espessura do molde quanto a composição da liga exerceram forte influência na transferência de calor.

Referências Bibliográficas

SPIM Jr., J.A. & Garcia, A. Modelagem Numérica da Solidificação Baseada na Analogia entre Sistemas Térmicos e Elétricos, Anais do 10° Congresso de Engenharia e Ciência dos Materiais – CIBECIMAT, v.2, pp.594-597, 1995.

SANTOS, C.A.; Spim Jr., J.A.; Quaresma, J.M.V. & Garcia, A. Aplicação de um Modelo Numérico na Determinação Experimental da Condutância Térmica da Interface Metal/Molde em Sistemas Estáticos de Fundição, Anais do IX Seminário de Metais Não-Ferrosos da Associação Brasileira de Metalurgia e Materiais, pp. 197-202, 1996.

BEJAN, A. – Heat Transfer, John Wiley & Sons., New York, 1993

POIRIER, D.R. & Poirier, E.J. – Heat Transfer Fundamentals for Metals Casting, **The Minerals, Metals and Materials Society,** 1994.

PRATES, M.A. & Davies, G.J. – Solidificação e Fundição de Metais e suas Ligas, LTC/EDUSP, São Paulo, 1978.

HO, K. & Pehlke, R.D. – Mechanisms of Heat Transfer at a Metal/Mold Interface, Transactions of the American Foundry Society, v.92, pp.587, 1983.

PRATES, m.; Fissolo, J. & Biloni, H. – Heat Flow Parameters Affecting the Unidirecional Solidification of Pure Metals, **Metallurgiacal Transactions**, v.73, pp.1419, 1972.

PRABHU, K.N.; Madheswaran, D.; Kumar, T.S.P. & Venkataraman, N. – Computer Modeling of Heat Flow and Micoestruture Fineness in Chill-Cast Aluminum Alloy LM-24, **AFS Transactions**, v.92, pp.661-677, 1992.

WU, M.H.; Wang, Y.X. Guo, T. & Zhang, Q.X. – Computer Aided Chill Design for Steel Casting, ASF Transactions, v.92, pp.27-35, 1992.