A VELOCIDADE DE CORTE COM PLASMA ASSOCIADA À FORMAÇÃO DE ESCÓRIAS

Aleir Antonio Fontana De Paris

Universidade Federal de Santa Maria, Centro de Tecnologia, Departamento de Fabricação e Projetos de Máquinas, 97105-900, Santa Maria, RS, Brasil. E-mail: <u>aparis@ct.ufsm.br</u>

Resumo

O corte de chapas de aços ao carbono com o processo plasma tem se tornado comum nas indústrias mecânica-metalúrgicas pela sua versatilidade, que alia alta velocidade de corte e baixo custo operacional, até espessuras de 1 ¹/₂". A qualidade do corte para chapas finas equivale-se, e a s vezes é melhor, do que quando utiliza-se o processo oxiacetilênico. Este trabalho estuda a aplicação do processo plasma tendo como gás "plasmagênico" ar comprimido, no corte de chapas de aço carbono SAE 1020 com espessura de 5 mm. Poucas referências são encontradas na literatura sobre corte plasma com ar comprimido e sua influência na formação de escórias. Determinou-se uma faixa ideal de velocidades teóricas e experimentais, que não provoque a aderência de escórias tanto em alta como em baixa velocidade, para uma determinada corrente de corte.

Palavras-chave: Corte plasma, Escória, Aço carbono, Velocidade de corte

1. INTRODUÇÃO

O corte de metais com o processo plasma tornou-se uma opção disponível e bastante econômica para indústrias do segmento metal-mecânica (De Paris *et al*, 1999). Seu benefício não é somente neste aspecto mas também em termos de versatilidade, já que sua aplicação não é limitada aos aços carbono como no processo oxiacetilênico ($O_2-C_2H_2$), mas aos metais não ferrosos e aços inoxidáveis.

No início de seu desenvolvimento, o processo plasma não tinha competitividade no corte de aços carbono com relação ao processo O_2 - C_2H_2 pela baixa velocidade de corte e acabamento dos mesmos em função dos equipamentos disponíveis (Snyder II & Manohar, 1994). Outra limitação imposta era a espessura de corte impedindo seu uso e aplicação.

Com o desenvolvimento e avanço tecnológico dos equipamentos, o processo plasma foi sendo aprimorado tornando-se uma opção de grande versatilidade e qualidade no corte de metais. Se uma fonte plasma for adequadamente selecionada para um determinado trabalho, as velocidades de corte serão razoavelmente elevadas e compatíveis com a velocidade de produção além de minimizar as distorções das peças devido ao aporte térmico (Fernicola, 1998).

No entanto, apesar do atual estágio de desenvolvimento, alguns senões continuam limitando a qualidade do processo plasma. Para chapas de aço carbono com espessuras acima

de 1 $\frac{1}{2}$ " a melhor escolha contínua sendo o O_2 - C_2H_2 por ser geralmente mais veloz e com melhor acabamento superficial de corte.

Um dos problemas tecnológicos associados ao corte de aços carbono pelo processo plasma é a aderência de escórias nas arestas inferiores de corte. Esta limitação está relacionada com a velocidade de corte, corrente do arco, diâmetro do orifício de constrição do plasma e espessura de corte (Nemchinsky, 1997).

O objetivo deste trabalho é a determinar a velocidade ideal para o corte de uma chapa de aço carbono com pequena espessura.

2. TÉCNICAS EXPERIMENTAIS

Para o estudo utilizou-se uma fonte plasma do tipo inversora com capacidade máxima de corte de 15 mm, arco transferido, e como gás "plasmagênico" ar comprimido. Considerando esta limitação na espessura de corte, os experimentos foram efetuados sobre uma chapa de aço carbono SAE 1020 com espessura de 5 mm. Para limitar o número de parâmetros operacionais, a corrente foi mantida em 50 ampères, tensão de arco de 120 volts, pressão de ar comprimido de 7 atm, diâmetro do orifício do bico de corte de 1,5 mm.

As velocidades de corte empregadas no estudo variaram entre 150 e 2500 mm/min.

A tocha foi montada em um dispositivo com velocidade controlada para mecanizar o processo e manter a velocidade constante durante o corte.

3. RESULTADOS E DISCUSSÃO

O processo plasma assim como outros processos ditos de alta densidade de energia, laser e feixe de elétrons, apresentam um formato de arco ou feixe incidente, de forma aproximadamente cilíndrica até uma determinada distância do bocal de saída. Alguns estudos foram efetuados sobre a distribuição de temperatura na peça com este formato de energia incidente.

O processo de transferência de calor durante o aquecimento de metal por uma fonte em movimento foi considerada em vários artigos começando com o trabalho clássico de Rosenthal (1941). Em seu estudo, a fonte de calor foi considerada pontual. Em outro trabalho Swift-Hook & Gick (1973) consideraram a fonte de calor sob a forma de linha infinitamente estreita. Bunting & Cornfield (1975) fizeram um estudo mais aproximado do formato do jato plasma, considerando o feixe incidente sob a forma cilíndrica, figura 1, e o calor para fundir o metal no *front* com o formato de lua.

Figura 1. Situação típica de corte com o feixe de forma cilíndrica.

A partir destes trabalhos, Nemchinsky (1997), desenvolveu um equação que relaciona a velocidade máxima de corte para o processo plasma em função da forma cilíndrica da energia incidente.

Partindo da fórmula clássica de Rosenthal (1941) para uma fonte de calor pontual:

$$T(r) - To = \frac{Q}{2\pi H \kappa} \cdot Ko \left(\frac{Vr}{2\alpha}\right) exp\left(-\frac{Vx}{2\alpha}\right)$$
(1)

Considerando a superfície de aquecimento como sendo a superposição de linhas de calor e a parte mais fria do contorno plasma-metal está localizada na frente da linha do feixe em x = R e y = 0, figura 2, chegou a seguinte equação de transferência de calor:

Figura 2. Coordenadas utilizadas para a distribuição de temperatura.

$$Tm - To = \frac{Q_{\kappa}}{\pi^2 H \kappa} \int_{0}^{\pi/2} exp\left(-\frac{V_{máx} R sen^2(\theta/2)}{\alpha}\right) Ko\left(\frac{V_{máx} R sen(\theta/2)}{\sqrt{2\alpha}}\right) d\theta$$
(2)

Esta equação foi desenvolvida considerando que a velocidade máxima de corte corresponde a condição que a parte mais fria está na temperatura de fusão, Tm. Ela relaciona a velocidade máxima de corte Vmáx e a energia perdida $Q\kappa$ devido a condução térmica durante o corte.

Finalmente chegou a uma equação para a velocidade máxima de corte como sendo:

$$V_{máx} = \frac{Q_c}{\pi \rho C_1 \Delta T_m R H \left(1 + \frac{2}{\pi} + \frac{W}{\pi C_2 \Delta T_m^*}\right)}$$
(3)

Onde Qc é a soma das energias perdidas por condução Q κ e a energia que deixa a chapa com o metal fundido Qi: Qc = η V I; Δ Tm = Tm – To; ρ é a densidade; C é a capacidade térmica; R raio de constrição do arco e H a espessura da chapa.

Se aplicarmos os dados experimentais na equação (3), que é como já viu-se dividida em duas partes: $\rho = 7.8 \text{ g.cm}^{-3}$, $C_1 = 0.45 \text{ J.g}^{-1}$.K⁻¹ (estado sólido); $C_2 = 0.86 \text{ J.g}^{-1}$.K⁻¹ (estado líquido); $\Delta T_m = 1510 \text{ K}$ (temperatura de fusão até a temperatura ambiente); $\Delta T_m = 1540 \text{ K}$

(temperatura do ferro líquido); $W = 275 \text{ J.g}^{-1}$, R = 1.5 mm; H = 5 mm e $Qc = \eta VI = 50 \text{ x}120 \text{ W}$, obtemos uma velocidade máxima teórica de corte de aproximadamente 1640 mm/min.

O trabalho experimental, fixado os parâmetros tensão e corrente, consistiu em cortes com velocidades variáveis. As velocidades máxima e mínima de corte foram baseadas na formação de escória na raiz da sangria. Esta escória é o resultado de metal fundido (ou oxidado) que resolidifica nas arestas inferiores da superfície de corte antes que possa ser expulso pelo jato plasma. Para uma velocidade inicial de 150 mm/min, figura 3, o corte apesar de separar perfeitamente as duas partes, apresenta superfícies irregulares com muitas estrias formada pela pressão do jato plasma como também a aderência de grande quantidade de escória. A largura do corte situa-se na média em torno de 4 mm, figuras 4 e 5. Isto significa que houve uma concentração muito grande de calor e aumento da largura de corte muito maio que o diâmetro do feixe incidente.

Figura 3. Superfície da seção de corte mostrando uma camada espessa de óxidos aderidos na aresta inferior.

Figura 4. Vista superior do corte plasma para uma velocidade de 150 mm/min.

Figura 5. Vista inferior da superfície de corte com velocidade de 150 mm/min. Grande formação de escórias.

Aumentando esta velocidade, o volume e a aderência da escória começa a diminuir. A partir de 900 mm/min até uma velocidade de 2000 mm/min o corte apresenta-se com pouca ou ausência de escória com melhores propriedades na faixa de 1500 a 2000 mm/min.

A figura 6, mostra o aspecto superficial do corte e das arestas livres de escórias para a velocidade de 2000 mm/min. As figuras 7 e 8, mostram o aspecto superior e inferior do corte com a velocidade máxima. Empregando velocidade maior, 2150 mm/min, o corte começou a apresentar novamente muita aderência e volume de escória na parte inferior das arestas.

Figura 6. Superfície da seção transversal de corte com velocidade de 2000 mm/min. Arestas isentas de óxidos aderidos.

Figura 7. Vista superior do corte com velocidades de 2000 e 1750 mm/min. Com velocidade de 2500 mm/min só houve fusão superficial.

Figura 8. Vista inferior do corte com velocidade de 2000 mm/min.

Nas figuras acima, nota-se que com o aumento da velocidade até um valor máximo sem defeitos, a largura da sangria aproxima-se do diâmetro de constrição do feixe incidente (do bocal).

Comparando as velocidades limites, verifica-se que existe uma diferença de aproximadamente 20% entre a velocidade teórica calculada e a experimental. Esta variação se deve provavelmente a dados não contemplados no cálculo tais como tipo e vazão de gás, já que o mesmo tem uma importância grande na largura da sangria e portanto na velocidade, Fujimura & Kawano (1987). Além disso, segundo Nemchinsky (1997), o valor de Qc seria aumentado por um coeficiente de eficiência η que é maior que a unidade já que existiria uma liberação extra de calor devido à reações químicas do plasma com o metal fundido.

4. CONCLUSÕES

Através do estudo experimental, determinou-se a velocidade máxima aproximada de 2000 mm/min para o corte de uma chapa de aço carbono SAE 1020 com espessura de 5 mm, utilizando o processo plasma. A velocidade mínima de corte com boas propriedades superficiais e de arestas situa-se em torno de 900 mm/min. Se compararmos com a velocidade teórica calculada, não se verifica uma discrepância muito acentuada, levando à resultados compatíveis.

5. AGRADECIMENTOS

Este trabalho só pode ser levado a bom termo pelo incentivo da FAPERGS (Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul), processo nº 97/1427.0, a quem o autor manifesta seu agradecimento.

6. REFERÊNCIAS

- Amaral, Luis Gustavo ; Rissardo, Wagner ; De Paris, Aleir. Comparação entre os custos dos processos de corte dos metais: oxicorte e plasma. XV CRICTE, Santa Maria, RS, 1999,
- Manohar, Murali ; Snyder II, James P. Dross formation during plasma arc cutting of steels. Weld. J., v. 73, n. 11, 1994, pp. 45-51.
- Fernicola, Robert C. Guide to manual plasma arc cutting. Weld. J., v. 77, n. 3, 1998, pp. 53-55.
- Nemchinsky, Valerian A. Dross formation and heat transfer during plasma arc cutting. J. Phys. D: Appl. Phys., V. 30, 1997, pp. 2566-2572.
- Rosenthal, Daniel. Mathematical theory of heat distribution during welding and cutting. Weld. J., v. 20, n. 5, 1941, pp. 220s-234s.
- Swift-Hook, D.T. ; Gick, A.E. Penetration welding with lasers. Weld. J., v. 52, n. 5, 1973, pp. 492s-499s.
- Bunting, K.A.; Cornfield, G. Toward a general theory of cutting: a relationship between the incident power density and the cut speed. Trans. ASME J. Heat Transfer, v.97, n. 2, 1975, pp. 116-122.
- Fujimura, Hiroshi ; Kawano, Takayuki. Studies on blowhole formation in welding of air-plasma cut steel plates. Trans. Japan Weld. Soc., v. 18, n. 1, 1987, pp. 46-53.