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Abstract

The objective of this work is to describe the positional control of an unconstrained
multi-link flexible structure. The experimental apparatus was designed to be
representative of a flexible space structure such as a satellite with multiple flexible
appendages. In this work we describe the analytical modeling and the simulation of a
position control using a Linear Quadratic Regulator.
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1. INTRODUCTION

This paper presents the analytical modeling of a multibody flexible structure and the
simulation of its position control using LQR design, with a reduced-order estimator. The
experimental setup, show in the figure 1, was assembled at ITA Dynamics Laboratory with
the aim to investigate the dynamics and the position control of flexible structures
representative of aerospace structures such as a satellite with flexible appendages. The
experimental setup is composed of two flexible aluminum beams coupled to a central rigid
hub. The hub is mounted on a steel disc supported on a gas bearing table, in an attempt to
minimize the static friction and to simulate the structure’s slew motion in space conditions.
The steel disc is linked to a brushless DC motor which gives the necessary excitation to the
structure. The direct-drive torque actuation avoids the introduction of spurious non-linear
effects such as dry friction and backlash in the gear transmission system.

The instrumentation and measurement subsystems consist of collocated and non-
collocated sensors and their respective signal conditioning systems. An accelerometer is used
to  measure the vibrations of the beam tip. A full strain-gage bridge is used to measure the
elastic deformation at a known position of the beam. The collocated sensors consist of a
tachometer and a potentiometer both fixed to the motor axis. A schematic view of the
experimental set up is shown in figure 1.



Figure 1- Experimental Setup

2. THE ANALYTICAL MODEL

The generalized Lagrangian approach is used to derive the analytical model of the
unconstrained multi-link flexible structure. The unconstrained characteristic results from the
natural motion without external influences, i.e, all the structure is allowed to vibrate and its
solution involves both the inertia of the rigid and the flexible parts (Barbieri & Özgüner,
1988). In this study we assume that the elastic deformation of the beams are symmetric with
respect to the hub, consequently it is necessary to model only the elastic displacement of one
of the arms (Junkins and Kim, 1993). The position of a generic point on the beam is written
on a local body fixed coordinate system, as shown in the figure 2.
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Figure 2. Coordinate system

The kinetic energy of the system is the sum of the kinetic energy of the hub, the arms and
the tip mass, where the latter is considered as a boundary element.



T = Thub + Tbeam + Tboundary (1)
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Ihub is the hub inertia, ρ is the linear mass density of the beam, L is the appendages length and
mt is the mass of the accelerometer located at the tip of the beam, and R is the position vector.

The elastic potential energy of the beam does not take into account the shear deformation
and the rotary inertia of the beam, and is given by the following expression:
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The Lagrangian of the system, is written as the total kinetic energy minus the potential
energy of the structures, VTL −= , while the non-conservative work done by the applied
torque is given by:

τδθδ =ncW (6)

From previous work, Góes et al. (1998) and Negrão (1998 and 1999), it follows that the
equations of motion can be written in the following matrix equation, where it was considered
only the first three modes of the distributed system:
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where:
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and )x(jφ  are the eigenfunctions of the hub-beam system.



Now it is simple to get the state-space representation of the system in the form:

uBAxx +=� (12)

where the A e B matrices are:
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We define the observation matrix, C, that describes the measured signals in terms of the
state variables. This matrix is obtained from the model of the available sensors. The
accelerometer is located at the free tip of the beam and its signal is conditioned by a pre-
amplifier and a double integrator filter with a global coefficient of sensitivity given by Ga,
expressed in [V/cm] units. Thus, one can write:

))t,L(yL(Gaace += θ (14)

Rewriting the integrated accelerometer equation, as in (Negrão, 1998) it follows that:
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The potentiometer provides a voltage proportional to the angular position of the hub,
)t(Gppe θ= . The full strain-gage bridge gives a signal proportional to the axial strain of the

beam ( sε ), which can be related with the elastic deformation y(x, t), at the point were it is

located by following equation,
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where, e is the thickness of the beam. The strain-gage sensor output is rewritten as:
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where, x1 is the position where the sensor is located on the beam. The tachometer gives a
signal proportional to the angular velocity of the hub, )t(te θ�= , which combined with the

other sensor equations, gives the observation vector , xCy .= , here
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and,
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3. THE ANALYTICAL TRANSFER FUNCTIONS

To obtain the analytical transfer functions, for the unconstrained multi-link flexible
system, we used the physical parameters listed in table 1,.

Table 1. Model parameter of the unconstrained flexible beams

Aluminum density ρ 2.7950 103 kg/m³
Aluminum Young's modulus E 6.8900 1010 N/m²
Beams width Eb 4.1200 10-3 m
Beams height Hb 8.0780 10-2 m
Beams length L 9.7150 10-1 m
Beams cross-section area A 3.3281 10-4 m2

Beams moment of inertia I 4.7070 10-10 m4

Beams mass moment of inertia Ib 2.8430 10-1 kg m2

Hub mass moment of inertia Ihub 7.6749 10-1 kg m2

Hub radius r 9.0000 10-2 m

Applying the Laplace transform into eq. (12), assuming zero initial conditions, and using
the model parameters listed in table 1, we can obtain the analytical transfer functions for each
one of the sensors in the form bellow.
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4. POSITION CONTROL

Position control of mechanical systems with structural flexibility has been an important
research topic in recent years. Here, we show the simulation results of a position control using
the LQR design. Considering that the system is described by:
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together with a functional,
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the solution of the LQR problem is to minimize,  J, with respect to the control input, u(t),
where J represents the weighted sum of energy of the state and control; and Q and R represent
their respective weights on the different states and control channels. The problem is solved by
an algebraic Riccati equation  :

01 =′−++′ − PBPBRQPAPA (22)
and, the optimal control law  is given by:

 xku −= , (23)

where, PBRk ′= −1 (24)
The implementation of the state feedback law requires that the state vector, x , is

available for measurement and feedback, which is not the case here. In this case a reduced-
order observer  was used to estimate the modal coordinates of the system. As given in
Chen(1984),  the reduced-order observer is:
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where,

1222 LAAF −= ;   1121 LAAFLH −+= ;   12 LBBG −= ;  MLPN += ; (26)
and,

L is the observer gain;
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N,M,P,T are matrices transformations with properties as defined in Chen(1984);

The control law  with an external reference, r, is then written as:
rxku +−= ˆ ; (28)

The closed loop transfer function can be obtained directly by combining the closed loop
system and observer equations using the external reference
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The  scheme of the LQR design using a reduced-order observer is shown in figure 3.

∫

∫B C

N

M

F

L
k

G

H

r

u

y

w�

w

x� x

Observer

x̂

Figure 3. LQR Control Scheme



The eigenvalues of the estimator are chosen arbitrarily, and table 2 shows the chosen
numerical eigenvalues. The gain L is determined such that the eigenvalues of, 1222 LAA − , are
the eigenvalues of the estimator.

Table 2. Eigenvalues of the estimator
-14.7575 + 9.8400i
-14.7575 -  9.8400i
  -6.3481 + 4.6586i
  -6.3481  - 4.6586i

Using a unit step reference signal, the results of the position control using LQR design
with reduced-order observer are illustrated in figure 4 to figure7:

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

Time [s]

Po
si

tio
n 

[r
ad

]

0 1 2 3 4 5 6 7 8 9 10
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time [s]

V
el

oc
ity

 [
ra

d/
s]

Figure 4. Angular position for a step
reference

Figure 5. Angular velocity for a step
reference
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Figure  6. Transversal deformation  for a step
reference

Figure  7. Tip acceleration for a step
reference

As one can see in the Figures (4) to (7), the position control is efficient. The final position
was reached in 5 seconds. This was the best performance that could be achieved without
excitation of the higher vibration modes of the beam. This work is still in progress, and we are
implementing an experimental set-up for real-time control, using as platform the program
MATLAB/ SIMULINK. We also intend to implement other control strategies including the
LQG/LTR, which due to the system inaccuracies, could be proven to be more robust to the
unmodelled dynamics and sensor noise.



5. CONCLUSIONS

This paper reports preliminary results of computational simulation for the control of an
experimental apparatus with multiple flexible bodies. The model was derived using the
Lagrangian approach and its discretization with the Assumed Modes Method. The results of
the position control using LQR design, with reduced-order observer, showed that the
controller reached the target position in 5 seconds. This work is still in progress using the
MATLAB/SIMULINK to implement the real time control. This preliminary result shows that,
due to the system inaccuracies, a robust control synthesis like LQG/LTR should be more
suitable to control this kind of dynamic system (Soares, Goes and Souza, 1996).
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