
DAMAGE  DETECTION  WITH  DIAGNOSTIC  MODELS  BASED  ON
FRF-MEASUREMENTS

Frank Brunzel
Hans Heinrich Müller-Slany
University of Duisburg, Institute of Mechanics, 47048 Duisburg, Germany.
E-mail: brunzel@mechanik.uni-duisburg.de
E-mail: mueller-slany@mechanik.uni-duisburg.de
Antonio Eduardo Turra
UNESP/FEIS, Departamento Engenharia Mecânica, 15385-000, Ilha Solteira/SP, Brazil.
E-mail: turra@dem.feis.unesp.br

ABSTRACT

The damage detection procedure presented here uses a diagnostic model. This diagnostic
model must be substantially reduced and highly dynamical correct and sensitive for local
parameter changes. The generation of a diagnostic model can be formulated as a multicriteria
optimization problem. In different steps of the adaptation procedure different physical
properties of the real elasto-mechanical structure are adapted. A high sensitive diagnostic
model concerning structural damage can be found by adaptation of the calculated FRF’s of
the diagnostic model to the measured FRF’s of the real undamaged structure. The damage
detection is solved by an optimization procedure which is based on measurements only. The
final result is the correct position of damage. The precision of the damage parameters is a
function of the reduction of the diagnostic model. The generation of the diagnostic model and
the FRF based damage detection is shown by an experimental example of a crankshaft.

Keywords: damage detection, diagnostic model, FRF measurement, multicriteria
optimization

1 INTRODUCTION

Nowadays it is of high economic interest to avoid maintenance work on machines at
work. During the past few years many papers have been written focussing on damage
detection based on vibration measurements. More than 150 papers with this subject can be
found in the review paper [Doebling et al, 1998]. All these papers are based on the fact that
the modal properties of a system are functions of the real physical system parameters. The
model based damage detection process can be divided in two main tasks. The first task is to
create a diagnostic model D that represents the real system behaviour. The second task is to
identify the damage with help of this  diagnostic model. In both tasks we have to deal with an
inverse vibration problem. This inverse vibration problem is an ill conditioned mathematical
problem. We can solve this problem by creating the diagnostic model and the damage
detection on the base of frequency response function (FRF) measurements and experimental
modal analysis results.



The requirements on the diagnostic model are the high dynamical correctness and the
sensitivity of the model. At the same time it should be substantially reduced concerning the
DOF’s. The main difficulty is the increasing loss of information due to discretization. The
process of model based damage detection is shown in figure 1.

2 THE  DIAGNOSTIC  MODEL

The diagnostic model creation task is to determine the design parameters of the
diagnostic model from the vibration behaviour of the real system. In other words it is
necessary to solve the inverse problem based on vibration measurements of the real system. It
is not possible to find an unequivocal solution for this problem. In the shown procedure the
problem of model generation is solved by an optimization process to determine the design
parameters.

The diagnostic model is a highly condensed FE-model of the real system. The FE model
consists of mass- and beam-elements. The parameters of these elements are determined by a
constrained hierarchical optimization procedure. The diagnostic model is the final design of
this optimization procedure. It is sensitive for the damage detection task.

2.1 The dynamical properties of the diagnostic model

The diagnostic model represents the real system and should be sensitive for the detection
task. For this goal it is necessary to specify qualified dynamical properties. The properties
which are used here for this task are:
•  mass geometrical properties (total mass, centre of mass and tensor of inertia ),
•  natural frequencies,
•  natural modes and
•  FRF’s of the system.
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Figure 1: Model based damage detection procedure



2.2 The multicriteria optimization procedure

The dynamical behaviour of the diagnostic model is defined by mass and beam elements
of a FE-structure. The properties of the mass elements and beam elements are described by a
design vector x = [ x1, ... , xn]

T with n variables. The design variables are the mass and the
stiffness of a beam element and the coordinates of both element nodes. The design variables
of a pure mass element are the mass and the coordinates of the position of the mass.

The task of generation of the diagnostic model can be formulated as a constraint vector-
optimization problem [Müller-Slany, 1992]:
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with: x: design variables, f(x): objective function, ε(x): error expressions, h(x):equality
constraints, Σ: feasible range, (xL, xU): lower and upper bounds.

The elements of the vector objective function f(x) are error expressions εi(x) between the
dynamical properties of the diagnostic model Pi

D(x) and the real system Pi
S(x). Usually we

can create the vector objective function f(x) in the following way:
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The error expressions εi(x) i = 1, ..., 6 of the objective vector are functions of the design
variables x = 1, ..., n. The first four and the sixth error expressions of the dynamical
properties can be formulated by relative error equations. The error expressions ε5(x) of the
natural modes must be calculated in a different form. To achieve better results in the
optimization procedure we use the expression (3) which is similar to the Modal Assurance
Criterion (MAC) for each mode k:
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with: ω k natural frequency, k: number of considered modes, (qD, qS) mode vector for the
diagnostic model D and real system S of mode k.

The optimization problem (1) will be solved by a numerical iteration process with a
sequential quadratic programming (SQP) optimization algorithms. The used SQP algorithms
E04UCF is taken from [NAG17] library. The structure of this optimization process is shown
in figure 2. During the optimization the design vector x will be modified until the final design
fulfills the minimization criterion (1). Finally a dynamical highly accurate diagnostic model
has been created.

Usually the vector optimization problem is solved by scalarization of the vector objective
function f(x) [Eschenauer et al, 1990]. Generally the superposition of all weighted
components εi(x) of the vector objective function f(x) to a scalar objective function s(x) leads
to good results. For the generation of a diagnostic model this method behaves poor. It was



necessary to find a better way to solve the optimization task. The developed method is a
hierarchical scalarization strategy [Müller-Slany, 1993]. In this method the error expressions
εi(x) are combined in different preference groups:
1. all mass-geometrical physical properties,
2. all natural frequencies,
3. all natural modes and
4. selected points of the FRF’s of the system.

The diagnostic model creation task can now be done in three or four steps. The number of
steps depends on the complexity of the real structure. For a simple structure the steps one, two
and four are used to create the diagnostic model. For a complex structure all shown steps are
necessary. The optimization will be done following the sequence of steps. At first the mass
geometrical properties will be adapted then the natural frequencies. If necessary the natural
modes are adapted next and at last the selected points of the FRF’s. As an important point of
the hierarchical scalarization strategy the physical properties which are adapted must be fixed
by additional constraints h(x) in the next steps. The result after the last optimization step is a
dynamical highly correct model.

2.3 The FRF adaptation process

A very important adaptation step for the diagnostic model is the adaptation of selected
points of the FRF’s. This adaptation makes the diagnostic model sensitive for detection of a
damage of the real structure. Tests have shown that it is not possible to detect damage without
FRF adaptation.

We have to compare measured FRF values of the real system and calculated FRF points
of the diagnostic model [Pereira, 1996]. The ith column of the calculated FRF matrix or
receptance matrix HD by using the frequency ω i is given by:
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Figure 2: Diagnostic model generation



with: M: mass matrix, K: stiffness matrix of the diagnostic model and, the force vector
f = [0, …, 0, 1, 0, …, 0]T, where the excitation is in the same direction as the measurement.
The next step is to build the error function 6 for the FRF adaptation process:
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Here the number of used DOF’s of the diagnostic model is j and the number of updated FRF
points is i. The number of selected points of the FRF depends on the complexity of the
structure of the system.

3 THE  DAMAGE  DETECTION  PROCEDURE

The goal of the damage detection procedure is to identify the damage of a real system by
vibration measurements. The damage detection process is based on adaptation of the
diagnostic model to the dynamical properties of the real damaged structure, see figure 1. The
damage can be described by the difference of the design parameters of the diagnostic model
D: xD and the adapted diagnostic model U: xU.

For complex systems the damage detection task is an adaptation procedure in two steps.
In the first step the natural frequencies of the diagnostic model D will be adapted to those of
the damaged system F. In the second step the FRF’s of the adapted diagnostic model will be
adapted to the real measured FRF’s of the damaged system F. The design vector x for the
damage detection procedure now contains only the stiffness parameters of the diagnostic
model. This is because of the expected crack has no influence on the mass and the location of
the model elements.

4 EXAMPLE  OF  THE  PROCEDURE  WITH  A  CRANKSHAFT

The diagnostic model creation procedure and the damage detection procedure shall be
shown on an example of a crankshaft of a VW engine. The crankshaft is shown in figure 3. It
has a mass of 15,74 kg and a length of 430 mm. The diameter of the main bearings is 54 mm
and the diameter of the connecting rod bearings is 48 mm. The damage is a cut of 5 mm depth.

The diagnostic model is built by 25 beam and 8 mass elements. The design vector x for
the diagnostic model contains 148 elements. These 148 elements are:
•  8 masses of the 8 mass elements,
•  17 masses of the 25 beam elements (8 masses of the beam elements are set to zero),
•  48 variables to define the position of the 26 nodes (the first and the last node is fixed) and
•  75 variables to define the stiffness of the 25 beam elements.

              

Figure 3: Crankshaft and the damage position

damage = cut of 5 mm



The layout of the diagnostic model is shown in figure 4.

For the crankshaft it is necessary to work with all four steps of the diagnostic model
creation procedure. The first problem is to find a qualified initial design for the diagnostic
model which has the correct sequence of natural modes and which does not change them
during the FRF adaptation process. The final errors of the diagnostic model D after the FRF
adaptation are shown in table 1.

Table 1: The precision of the diagnostic model after the FRF adaptation

physical properties error of adaptation
 total mass ε1 < 5,0 • 10-4

 position of centre of mass ε2 < 5,0 • 10-4

 used elements of tensor of inertia ε3 < 5,0 • 10-4

 first 6 natural frequencies ε4 < 5,1 • 10-4

 first 6 natural modes (MAC values %)  85,2< ε5 < 96,1
 8 selected points of FRF ε6 < 1,5 • 10-5

The result of the FRF adaptation is shown in figure 5. The vertical lines in figure 5
represent the frequency points where the FRF’s of the diagnostic model are adapted to the
measured FRF’s of the real system.

element 10 element 11 mass elementbeam element

Figure 4: The diagnostic model for the crankshaft
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The crankshaft is damaged by a cut on the bearing’s right side which is represented by
the connecting of the elements 10 and 11 of the diagnostic model. The damaged bearing has a
diameter of 48 mm and the cut has a depth of 5 mm. The maximum difference for the first six
measured natural frequencies is 2 %. The difference of the FRF sum between the undamaged
and the damaged crankshaft is shown in figure 6.

The damage detection is done in two steps. In the first step the first six natural
frequencies of the diagnostic model are adapted to the natural frequencies of the damaged
crankshaft. In the second step 12 FRF points of the model are adapted to the measured FRF’s.
The vertical lines in figure 7 represents the 12 FRF adaptation points. The design variables x
in the damage detection procedure are 75 stiffness parameters.
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Figure 6: FRF sum difference between the undamaged and damaged system
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Comparing the resulting design vector xU with the design vector xD of the diagnostic model
the damage can be found clearly.  on element 11. The most affected stiffness parameter is a
bending parameter of element 11 with an amount of -12,7 % comparing the diagnostic model
D with the updated diagnostic model U. The next highest difference is –2,8 %. The quality of
the FRF adaptation is shown in figure 7.

5 CONCLUSION

The introduced diagnostic model is both, a dynamical highly correct model and a highly
condensed one. The diagnostic model will be found in a hierarchical optimization procedure
in which the model behaviour will be adapted to chosen dynamical properties of the real
system. The basis for this adaptation are real measurements of the original system. The
damage detection is based on this diagnostic model.

The procedure is shown by using the measurements of a crankshaft from a VW engine. It
is possible to adapt the diagnostic model to the crankshaft’s behaviour with a very small error
concerning dynamical properties. After the generation of a diagnostic model a cut with a
depth of 5 mm was made on a connecting rod bearing of the real crankshaft. The damage
detection procedure is able to identify the introduced damage very clearly.
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