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Abstract 
 
 In this work computational tools are developed to carry out sizing optimization of truss 
under static and free vibration conditions. To do that an automatic procedure is implemented 
on MATLAB environment. Different types of algorithms such as gradient-based SQP 
methods and GAs are used. Some benchmark examples are analyzed. 
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1. INTRODUCTION 
        

The analysis and design of trusses has been a classical problem in structural optimization. 
Typical designs of trusses require a minimization or maximization of a stated objective 
function and simultaneous satisfaction of several design constraints. For several decades a 
great variety of methods have been developed to find the size of the elements that optimize 
trusses under statics loading with a given geometry and topology. 
 The nonlinear programming algorithms such as sequential quadratic programming (SQP) 
investigated here are gradient-based and requires the first derivative of the objective function 
and constraints with respect to the design variables.  
 The SQP algorithm is extremely efficient in locating a relative optimum closest to the 
starting point in the design space. In design applications where the design space is known to 
be multi-modal, the optimum may be obtained by starting the search from several initial 
points in the design space (Hajeta,1990). However, even then, there is no guarantee of 
obtaining the global optimum. To overcome the possibility of local optima in the present 
study, we investigate here a stochastic method based on genetic algorithm. 

Genetic algorithms (GAs) are search procedures based on the mechanics of genetics and 
natural selection. Although computationally simple, GA-based methods are very powerful in 
their search for improvement and they are not limited by restrictive assumptions above the 
search space. They overcome the possibility of local optima in the solution process. In truss 
optimization GAs  are very versatile as they accept both discrete and/or continuous design 
variables. The genetic algorithm developed by D. Goldberg, described in (Goldberg, 1989) is 
implemented here. Such algorithm have been applied to a wide range of engineering 
disciplines and has proven to give very good results in several applications. 

In this work both SQP and GA algorithms are employed to carry out the optimization of 
trusses under static and free vibration conditions. For comparisons purposes with SQP 
algorithm, only continuos design variables are considered in our applications. 
 
 
2. GENERAL PROBLEM FORMULATION 



The standard mathematical formulation of an optimization problem is: 
 
minimize or (maximize) F(s)  subject to:  JJi(s) ≤ 0  i = 1...nc  (1) 

s k
l  ≤  s k  ≤  s k

u  k = 1...ndvab 
  Where s is the design variable vector, ndvab is the total number of design variables 
F(s) is the objective function, JJi is a typical constraint and  sl  and  su are side constraints to 
the design variables. Typical objective functions and constraints considered in this work are 
shown in figure 1. 
 

 
TRUSS OPTIMIZATION 

 
Problem type 1: weight minimization 

  
  Objective function - W(A) 
 
  Constraints:  σ i / σmax - 1 ≤ 0   i = 1...m 
    
     uj / umax - 1 ≤ 0   j = 1...n 
     
    Amin ≤ A(i) ≤  Amax  i = 1...m 
 

Problem type 2: Fundamental frequency Maximization 
 
  Objective function - ω(A)  
  
  Constraints:  V = V0 

 

    Amin ≤ A(i) ≤  Amax  i = 1...m 
 

Figure 1 - Types of problems considered in this work: objectives and constraints. 
 
3. THE TRUSS OPTIMIZATION PROCEDURE 
 

In this work an integrated procedure is developed and implemented on MATLAB 
environment. SQP and GA algorithms are employed to obtain optimum designs. When 
dealing with GAs the procedure automatically integrates geometry definition and 
discretization, FE analysis and method of optimization solution, when SQP is used instead, a 
part from those, a sensitivity analysis procedure is incorporated in the process. Details of each 
integrated module can be found elsewhere (Afonso and Horowitz, 1998).  
 
4.  THE SEQUENTIAL QUADRATIC PROGRAMMING ALGORITHM 
 
 The SQP algorithm generates a search direction d at each iteration solving the definite 
quadratic subproblem, below: 
 

Minimize (or maximize):   ∇  Fk
T d + ½ dTBkd     (2) 

Subject to:    ∇ gk
T d + JJk ≤ 0     (3) 

    ∇ hk
T d + hk = 0     (4) 

 
where Bk is a positive definite approximation to the Hessian matrix of the Lagrangian function 
of the original problem (Han, 1976). 

 



≤( s, λ, µ) = F +λT
JJ + µTh        (5) 

  
The approximation to the Hessian is obtained using a Broyden-Fletcher-Goldfarb-Shanno 

(BFGS) scheme which maintains symmetry and positiveness. 
 Once direction d is found a line search is performed using a penalty function as the 
merit function in order to find the next iterand thus balancing the objective function while 
maintaining feasibility.   

There are several implementations of such algorithm. Two fundamental differences exit 
among them: the procedure used to solve the quadratic subproblem and the merit function 
used on the line search. In this work the SQP version existing in the MATLAB optimization 
toolbox is used. Such version uses some form of Gill et al projection method to solve the 
quadratic subproblem while the exact penalty function "", is used as merit function 
(Mathworks, 1995). 
 
5. THE GENETIC ALGORITHM 
 

GAs  are search procedures based on mechanics of natural selection and natural genetics. 
They combine the artificial survival of the fittest with genetic operations to form a robust 
search mechanism. An initial population is randomly generated from the individuals bits in a 
fixed-length binary string bs. Successive generations are produced in which new solutions 
replaces some of the older ones. For a particular iteration k a GA maintains a population of 
potential solutions of individuals or chromosomes which contain all of the necessary 
information about the individuals they represent (the structural designs here). 
 A selection operator identifies the fittest individuals of the current population whereby 
pair of parents are chosen for the next generations. In the present context, the fitness function 
might be weight, strain energy or the fundamental frequency. 
 During reproduction ‘crossover’ and ‘mutation’ mechanisms are used to produce new 
population. The incidence of mutation and crossover is controlled by the user through 
prescript probabilities pc and mp respectively.  
 After each cycle of selection, crossover and possibly, mutation, the fitness of each family 
is again obtained by converting the binary strings to decimal digits (decoding) and evaluating 
the objective function. The whole process then continues into the next generation until a 
stopping criteria is met. 
 Figure 2 presents a simplified version of the algorithm. Details concern to the procedure 
implemented here can be found in (Goldberg, 1989). 
 
5.1. Constraints Handling 
 

In general structural designs involve several constraints related to stress, displacements, 
geometric dimensions and other variables. In GA these are conveniently handled by a penalty 
function. Using such function, constraint violations are penalized to avoid the future use of 
the set of parameters. The fitness function of the genetic algorithm is a combination of the 
objective function and penalty term. There is no unique way to define the penalty  term. The 
fitness function considered here was proposed by Ghasemi and Hinton and al (Ghasemi and 
Hinton, 1996). We briefly describe their approach in the following.  

Considering ��i,j a normalized constraint for a particular population j such is ��i,j = ci,j  - 1 
and ci,j = JJi,j  / JJi,all  in which JJi,all is the allowable value of that constraint. The constraint ��i,j is 
satisfied if ��i,j ≤ 0. 
 If ��i,j ≥ 0 the objective function is penalized. In this case we define the following 
parameters  pv,i = (ci,j)

k in which k is related to constraint violation  (Ghasemi and Hinton, 



1996), and ��i,j = pc pvi (JJi,j)
2 when pc is the ‘penalty coefficient’ After all the constraints be 

penalized another parameters øi,j is calculated such that 
                 nc  

 øi,j = ∑ ��i,j           (6) 
                i=1 

Finally the penalized objective function F*
j is obtained such that F*

j = Fj( 1 +øj) where Fj 
is the original objective function (without penalization). 

In GA, F*
j has to be transformed into fitness values in such that the best design has 

maximum fitness. For minimization problems, in order to guarantee such aim and also 
positive values for the fitness, the following expression is considered for fitness. 
 

F’j = (F*
max + F*

min) - F
*

j        (7) 
 

In which F’j is the fitness of design j and F*
max and F*

min are the maximum and the 
minimum values of F*

j in the population of a particular generation j. It is recommended also 
to scale fitness function (Goldberg, 1989).  
 
5.2. Convergence Criteria 
 

Several termination criteria can be possibly used. Three convergence criteria for the 
present truss optimization are used: 
 
1. The number of generations: A fixed number of generations can be provided by user. The 

GA algorithm will stop when the allocated number is reached.  
2. Design changes: If the best design for the last 20 generations has not changed then 

iterations will stop. 
3. Objective Function norm: It the variation of the objective function in a population is 

smaller than a very small given value crate thus if  ( F – Fj(best) ) /  F  .100 ≤ crate were 
     F is average value, the algorithm will stop. 

 
 

GENETIC ALGORITHM PROCEDURE 
1. Read data 
2. Randomly generates initial population (generation 1) 
3. Perform a generation loop  

for each generation do: 
3.1. A design loop 

  for each design do: 
-  Design variables decoding 
-  Calculate original objective function 
-  Compute fitness function 

3.2. Check the convergence : if found stop 
otherwise: 
3.3. Store best individual into next generation 
3.4. Proceeds genetic operations: solution, crossover and mutation to create 

 population of new generation and go to step 3.1. 
 

Figure 2 - Basic  GA 
 
 
 
 



6. EXAMPLES 
6.1. Static Applications 
 

The three and ten bar 2D trusses are considered in this section for optimization using both 
GA and SQP algorithms described in this article. The objective is to minimize the weigh of 
the structure by constraining the element stresses at each truss member. 
a) Three bar truss  
 

Problem definition: Figure 3 shows the tree bar truss to be optimized. Two cross sectional 
area design variables are considered: X1 = A1 = A2 and X2 = A3. The material properties are 
Young’s modulus E = 2.07 . 108 and material density ρ = 1. The units are consistent. 

Here the allowable tensile stress is 20, and the allowable compressive stress is 15. Table 1  
presents the GA solution parameters adopted in this study. The bounds of the design variables 
are 0.1 and 1.0. 

 
Table 1 – GA parameters for all problems presented here. 

  GA parameters 

Condition Truss lc ps ng pc mp crate 

3 bar 6 10 100 10 1.0 1e-6 
static 

10 bar 8 200 150 10 1.0 1e-3 
3 bar 10 300 100 10 1.0 1e-6 free 

vibration 9 bar 10 400 200 10 1.0 1e-6 

 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 3 – Three bar truss 
 
Discussions of results: Table 2  shows the optimal solutions for the present problem, 

obtained here and also the results reported in reference (Ghasemi and Hinton, 1996). As can 
be observed, all results are within an acceptable range when comparing with the exact 
solution. The optimum GA solution is achieved at the 2nd generation and remains unchanged 
afterwards. 

 
Table 2 – Results of 3 bar truss  

Design Variable Present (SQP) Present (GA) Hinton (SQP) Hinton (GA) Exact 
X1 0.7887 0.7429 0.789 0.814 0.789 
X2 0.4082 0.4143 0.408 0.343 0.408 

Optimum Weight 263.9247 251.5403 263.896 264.600 263.9 

 
b) Ten bar truss 



Problem definition: The ten bar truss problem shown in figure 4 is the second example used in 
this section. The design variables are the cross-sectional areas of the ten elements. The upper 
and lower bounds of the design variables are respectively  10 and 0.1. The material properties 
considered in this case are: E = 107, ρ = 0.1. For element 9 the allowable stress is σall = ± 75 
while the remaining elements the stress allowable is σall = ± 25. Again all units are consistent. 
The GA solutions parameters used are given in table 1. 

 
 
 
 
 
 

 
 
 

 
 
 
 
 

Figure 4 – Ten bar truss 
 
Discussions of results: The optimization results obtained are listed in Table 3 together 

with the exact solution and those reported in reference (Ghasemi and Hinton, 1996). As can 
be observed the final objective value when using either GA or SQP are within acceptable 
range of the exact value. However, some of the optimum design variables differ from each 
other for the different methods investigated. 

 
Table 3 - Results of 10 bar truss 

Design Variable Present (SQP) Present (GA) Hinton (SQP) Hinton (GA) 

X1 7.9 7.518 7.90 7.518 
X2 0.1 0.458 0.10 0.458 
X3 8.1 8.430 8.10 8.430 
X4 3.9 3.544 3.90 3.544 
X5 0.1 0.100 0.10 0.100 
X6 0.1 0.460         0.10 0.460         
X7 5.7983 6.287 5.80 6.287 
X8 5.5154 4.992 5.51 4.992 
X9 3.677 3.350 3.68 3.350 
X10 0.1414 0.645 0.14 0.645 

Optimum Weight 1497.6 1516.0 1497.0 1516.0 

 
 

6.2. Free Vibration Applications 
 
 In this section we carry out optimization under free vibration conditions. A three bar and 
a nine bar benchmark examples are analyzed. In these structure the objective is to maximize 
the fundamental frequency whilst simultaneously keeping the structure weight constant. 
a) Three bar truss 



Problem definition: The three bar truss illustrated in Figure 5 is considered first. Two cross-
sectional areas are taken as design variable: X1 = A1 = A2 and X2 = A3 with a lower bound of 
0.00005 and an upper bound of 0.001. The material properties are: the Young’s modulus E = 
2.0 . 1011 and material density ρ = 7860. All units are consistent. The solution parameters 
used in the GA solution are shown in Table 1. 

Figure 5 – 3 bar truss under free vibration conditions. 
 
  Discussion of results: Table 4 compares the optimal solutions for the present example 
obtained here and in reference (Alkhamis, 1996). The solution in terms of the optimum 
objective function matches perfectly while some difference is found in terms of the design 
variables value (GA solutions). GA solution comes with some constraint violation (0.07%) 
 

Table 4 - Results of 3 bar truss under free vibration 
Design Variable Present (SQP) Present (GA) Alkhamis (SQP) Alkhamis (GA) 

X1 6.3984.10-4 3.230.10-4 6.398.10-4 3.230.10-4 

X2 1.3982.10-3 6.824.10-3 1.389.10-3 6.824.10-3 

Optimum Frequency 547.77 Hz 547.853 Hz 547.77 Hz 547.853 Hz 

 
b) Nine bar truss 

Problem definition: The second example studied in this section is the nine bar truss shown 
in Figure 6. The material properties used are the same of the previous example. The nine 
cross sectional area of the bars are taken as design variables. The lower and upper bound 
values are respectively 0.0005 and 0.5. Table 1 shows a list of parameters adopted in GA. 
 
 
 

 
 
 
 
 
 

Figure 6 – 9 bar truss under free vibration conditions. 
  
Discussion of results: The results for the different algorithms are provided in Table 5. Again 
good comparisons are obtained for the objective function, while the optimum design variables 
values obtained using GA presents some differences.  
 
 
 
 



 
Table 5 - Results of 9 bar truss under free vibration 

Design Variable Present (SQP) Present (GA) Alkhamis (SQP) Alkhamis (GA) 

X1 0.2721 0.317 0.272 0.317 
X2 0.3253 0.308 0.325 0.308 
X3 0.1429 0.181 0.143 0.181 
X4 0.0341 0.044 0.034 0.044 
X5 0.1008 0.079 0.101 0.079 
X6 0.1522 0.159 0.152 0.159 

X7 0.0327 0.026 0.031 0.026 
X8 0.2711 0.266 0.271 0.266 
X9 0.3063 0.260 0.306 0.260 

Optimum Frequency 37.3782 Hz 37.148 Hz 37.38 Hz 37.148 Hz 

  
7. CONCLUSIONS 
 
 In this work to carry out truss optimization two methods were considered here: the SQP 
and the GA. Both optimizers gave an excellent results and compared well. Although not 
explored in this paper, GA method allows the option of choosing a set of design variables 
from a certain specified catalogue. 
 Other main advantage using GA are: 

- very simple calculations are involved; complex problems can be solved reasonably 
reliably; problems that have many local optima can be solved; and it is easy to interface 
the GA method to existing simulations and models. 

 One of the major disadvantages of using method is that the CPU time is high, however 
the use of parallel computations helps to circumvent this problem. This topic is current under 
our investigation. 
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