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Abstract

The paper includes analysis of typical set of disturbances acting on ballistic spacecraft during
reentry the Earth atmosphere. It is shown that the most significant disturbing factors are
execution errors of de-boost impulse and variation of atmospheric parameters with respect to
standard values. Non-nominal aerodynamic characteristics and displacement of vehicle center of
mass from symmetry axis are disturbing factors also. There are analytical partial derivatives of
reentry parameters and landing point location with respect to de-boost impulse errors. For typical
de-orbit conditions the numerical values of derivatives are calculated. The paper contains also
investigation results of landing point dispersion due to disturbed atmosphere. Computational
Model of the Earth Disturbed Atmosphere-CMEDA (KIAM RAS) is used for reentry simulation.
The total number of calculated disturbed trajectories is more than 5000. All presented results are
necessary for ballistic design and choice of optimal mission scheme for an orbital type reentry
vehicle.
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1. INTRODUCTION

The problem of delivery experimental and observation results from orbit to the Earth arises
very often in the process of space research. The simplest and cheapest solution of the problem is
the use of a small ballistic reentry vehicle. Such kind vehicle has no control system for guidance
into the atmosphere. So, a dispersion of landing point may be significant, and it complicates the
search of vehicle and very often a safe landing also. If the vehicle is reusable, there is a problem
of heat flux restriction to retain the aerodynamic shape. Both factors are principal for choice of
vehicle shape and optimal mission scheme but the paper considers mainly an accuracy problem.

After mission analysis were obtained following preliminary results (Sikharulidze, 1998). The
initial mass of reentry vehicle is of 150...200 kg. The optimal thrust of de-boost engine is of 750
N. The aerodynamic shape is frustum of a cone type. Rational orbit is circular one with altitude of
250...300 km, in the plane of equator almost. Optimal reentry corridor on fight path angle θen

(between velocity vector and conditional boundary of the atmosphere at altitude of 100 km) is of
-3o...-4o. Corresponding value of de-boost velocity impulse is of 250...360 m/s. This corridor
provides a good landing accuracy and restricted heat flux also. The optimal direction of de-boost
impulse is against to orbital velocity vector. It provides a required reentry angle with minimum
propellant consumption, (Sikharulidze, 1982).



 An analysis of derivatives  (i.e. functions of influence) of reentry parameters or landing point
position with respect to errors  allows to estimate the sensitivity of trajectory on  disturbances.
Then it is possible to recognize the most significant factors and take measures for minimization
of their effects.
     One of the most significant disturbing factors are errors of de-boost impulse ∆V realization on
•  time of execution,
•  value of de-boost impulse,
•  in-plane orientation,
•  out-of-plane orientation.
     Another important disturbing factor is a difference of real atmosphere from standard one. To
obtain statistical characteristics  (mathematical expectation, dispersion, maximum and minimum
deviation) it is necessary to calculate a few hundreds of reentry trajectories for each set of initial
conditions. Clearly that very important is a model of the Earth disturbed atmosphere.
     Enough important disturbing factor is a difference of real aerodynamic characteristics of
reentry vehicle from nominal values. The difference may arise due to 2 reasons:
•  non-correct determination of characteristics,
•  change of aerodynamic shape during reentry.
     The first reason does not depend on type of reentry vehicle  (single-usable or reusable). It is
known that at the project phase an error of aerodynamic coefficients determination is of 10...20%.
The second reason is essential for reentry vehicle with ablating (collapsed) heat protection
material.  The aerodynamic shape of reusable reentry vehicle should not change in flight. In the
opposite case a reentry vehicle is no reusable one.
     The last considered disturbing factor is a displacement (shift) of vehicle center of mass  (c.m.)
from the symmetry axis. The displacement may arise due to
•  error of c.m. position determination,
•  movement of c.m. after expenditure of propellant, gas, etc.,
•  asymmetric change of aerodynamic shape in flight.
For reusable reentry vehicle only the first and second reasons are essential.
   The landing accuracy is very important for reentry vehicle, especially for reusable one. A high
landing accuracy allows to restrict a required landing polygon, simplifies tracking at the final
phase of trajectory, makes easy the search of vehicle and its recovery after soft landing. It
provides also a good condition for capture the vehicle by helicopter at parachute descend phase if
the vehicle has no system of soft landing (solid motor or shock absorber).

2. SET OF DISTURBANCES AND ESTIMATION OF LANDING ACCURACY

 Landing accuracy  significantly depends on given set of disturbing factors, their values and
possible combination. The most significant disturbances are: de-boost impulse execution time,
disturbed atmosphere, non-nominal ballistic coefficient and c.m. displacement from symmetry
axis. Preliminary estimation of landing accuracy we can get in linear approximation by use partial
derivatives of downrange and crossrange with respect to disturbing factors. At analysis of
disturbances one uses some mathematical models these differ from real physical processes. It is
impossible also to take into account all real disturbances due to insufficient understanding of real
physical processes. So, calculated landing error should be 20...30% less than given polygon to
provide the necessary reserve of landing accuracy.



 2.1. De-boost errors

     An error of de-boost impulse execution time δtdb only shifts the reentry trajectory. Derivative
of landing point position with respect to execution time error is  (Sikharulidze, 1999, NT-164)

     ∂L/∂tdb = VcirRE /rcir.
                                                                                                             (1)
Here Vcir is a circular velocity, rcir is a radius of orbit, RE = 6378 km is the Earth mean radius. For
circular orbit with altitude of  Hair = 300 km (all following results are given for this orbit) there is
∂L/∂tdb = 7380 m/s. It means that only 1s error of de-boost maneuver execution time shifts the
landing point on 7380 m.
    An error of de-boost impulse value  δ(∆V) influences on initial conditions of reentry, i.e., on
reentry velocity Ven and angle θen (see Figure 1). Besides, the error changes an angular range of
extra-atmospheric trajectory Φen (from de-boost point to reentry point) and flight time t en at this
phase. As a result, geocentric coordinates of reentry point (latitude ϕ0  and longitude λ0) are
changed.
    Derivative of entry velocity with respect to de-boost impulse value ∆V is

   ∂Ven/∂∆V= - (1-∆V/ Vcir) / (Ven/ Vcir).                                                                                        (2)

For reentry angles θen = - 3o and –4o the value of derivative is of ∂Ven/∂∆V= - 0.97.
Derivative of reentry angle with respect to de-boost impulse value is determined by equation

      ∂θen/∂∆V= -360o(rcir/rat){[(rcir/rat)-1]/[2- (rcir/rat+1)(1-∆V/ Vcir)
2]}1/2/[πVcir(Ven/ Vcir)

 2].         (3)

Here rat = RE+hat is the radius of atmosphere, hat = 100 km is the altitude of conditional boundary
of the atmosphere. There are ∂θen/∂∆V= -0.009 degree/(m/s) if θen = - 3o and  -0.007 degree/(m/s)
if θen = - 4o.
    Derivative of extra-atmospheric angular range with respect to de-boost impulse value is

    ∂Φen/∂∆V= -360o{[(rcir/rat)-1]/[2- (rcir/rat+1)(1-∆V/ Vcir)
2]}1/2/{πVcir[1-(1-(∆V / Vcir)

 2)]}.       (4)

There are ∂Φen/∂∆V= -0.14 degree/(m/s) if θen= -3o and -0.07 degree/(m/s) if θen= -4o. In the
second case the sensitivity is 2 times less.
     Derivative of extra-atmospheric flight time with respect to de-boost impulse value is described
by very complicated equation, so below are given only numerical values: ∂ten/∂∆V= -2 s/(m/s) if
θen = -3o  and  -1 s/(m/s)  if θen = - 4o. In the second case the sensitivity is 2 times less also.
     Very important property of optimal de-boost maneuver (against to motion direction at the
circular orbit) was proved early (Sikharulidze, 1999, NT-164). The maneuver provides both the
maximal value of reentry angle θ en   and non-sensitivity in linear approximation of total
descent trajectory to small errors of de-boost impulse orientation in the motion plane. It means
that all derivatives of motion parameters at extra-atmospheric phase with respect to impulse
orientation in the orbit plane (pitch angle ϑ in Figure 1) are zero.
     An error of de-boost impulse orientation in the horizontal plane (yaw angle ψ in Figure 1)
produces a side component of de-boost impulse  ∆Vsd. As a result, the motion plane turns around
the local vertical (i.e. radius-vector of initial point) by a small angle.  In the same time the descent
trajectory (in a new plane) does not change. A side displacement of landing point  ∆B appears,
and its value depends on derivative



     ∂∆B/∂∆Vsd = VcirRE sinΦΣ/[1- (∆V/Vcir)
2].                                                                               (5)

Here ΦΣ is a total angular range from de-boost point to landing one. There are ∂∆B/∂∆Vsd =
-770 m/(m/s)  if θen= -3o and  -670 m/(m/s)  if θen= -4o.

Figure 1. Scheme of de-boost maneuver                 Figure 2. Angular range of atmospheric phase

2.2. Variation of density and wind

    The model of disturbed atmosphere is very important for simulation of reentry trajectory. It
means more for ballistic reentry when the vehicle has no guidance into the atmosphere.
    Computational Model of the Earth Disturbed Atmosphere - CMEDA was developed at the
Keldysh Institute of Applied Mathematics (KIAM) in 1968-1998 (Sikharulidze, Korchagin,
Kostochko, 1999). The CMEDA is intended for
•  development of vehicle guidance algorithms,
•  estimation of expected accuracy of maneuver,
•  determination of aerodynamic loads, etc.
    It is the global model for altitudes from 0 km up to 120 km and includes all 12 months of the
year. The CMEDA contains  season-latitude, diurnal and random components of density
variations and a wind field also. It allows to generate an unlimited number of disturbed
atmosphere states for simulation of various flight conditions.
    A variation of density  δρ  is represented as normalized deviation of disturbed density ρ from
standard one ρst :

    δρ = (ρ − ρst) / ρst .                                                                                                                     (6)
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The total variation includes season-latitude, diurnal and random components

   δρ = δρsl (H, ϕ , N) + δρd (H, ϕ , τ) + δρr (H, λ, ϕ , N, ξ),                                                         (7)

where  H is an altitude, ϕ  is a latitude, λ is a longitude, N is a month number, τ is a local solar
time, ξ is a random vector.
       Season-latitude and diurnal variations are systematic and describe a mean or expected state
of atmosphere as function of altitude, latitude, month and local time. The random component
determines a difference between “actual” state of atmosphere and systematic components. For
description of random component the method of normalizing functions was developed. It is based
on the analysis of experimental measurement data. Three normalizing functions allow simulating
the harmonic density variations as function of altitude, latitude and longitude.
    The model of wind contains zonal (along the parallel) and meridian components of a wind
velocity. The zonal component U consists of three terms, season-latitude, diurnal and random:

    U = Usl + Ud + Ur .                                                                                                                     (8)

The meridian component has a random nature.
     Software of the CMEDA is compatible with any operational system that contains C-compiler.
     While vehicle flights into the atmosphere, dispersion of landing point arises due to variation of
density and wind. The bigger is reentry angle |θen |, the smaller is dispersion. So, for reentry angle
of θen= -3o  the mean square root of downrange variation  is of σL = 4.83 km and crossrange one
is of σB =1.20 km. The limit errors of landing point in assumption of standard (normal)
distribution law are of ∆L = ±3σL = ±14.5 km and ∆B = ±3σB = ±3.6 km . If reentry angle is  of
θen= -4o , there are accordingly σL = 4.03 km,  σB = 1.15 km and  ∆L = ±12.1 km,  ∆B = ±3.4 km.
Landing accuracy after de-boost at the quasi-equatorial orbit does not depend almost on the
season (month). Maximum difference is of 10% (Sikharulidze, Korchagin, Moraes, 1999).

2.3. Uncertainty of aerodynamic coefficients

    Any variation of aerodynamic coefficient from nominal value is a significant disturbing factor.
Really, derivative of velocity on time for motion into the atmosphere is described by equation

    dV/dt = -σDρV2/2 –g sinθ,                                                                                                         (9)

where σD = CDS/m is a ballistic coefficient of reentry vehicle, CD is a drag force coefficient, S is a
middle are, m is a mass of vehicle, ρ is a density of atmosphere, V is an air velocity (with respect
to the atmosphere), g is a gravity acceleration, θ is a flight path angle. Common accuracy of CD

determination is of 10...20%.
    Figure 2 shows that angular range of atmospheric trajectory Φat versus lgσD is a linear function
almost (with accuracy of 1%). It may be described by equation

     Φat (σD, θen = -3o) = 10.764o- 2.457o (lg σD + 3.0).                                                                 (10)

If q is an accuracy of σD determination (for example q = 0.1...0.2), then qσD is a variation of
ballistic coefficient from nominal value. The landing point possible downrange displacement due
to uncertainty of ballistic coefficient  σD  (or drag coefficient CD)  is of



     ∆L (θen = -3o) = (110 km/degree) ∂Φat/∂σD⋅q σD = -119 km⋅q.                                              (11)

This equation proves very important result (Sikharulidze, 1999, NT-164): possible landing point
displacement due to variation of ballistic coefficient σD  within limit of accuracy depends only on
reentry angle θen and given accuracy q but does not depend on value of ballistic coefficient. If
q = 0.1 (accuracy of  σD determination is of 10%) the possible landing point displacement is of
±12 km.
     For reentry angle θen = -4o there are following equations:

     Φat (σD, θen = -4o)=  8.395o-1.783o (lg σD +3.0),                                                                     (12)

     ∆L(θen = -4o) = -85 km⋅q.                                                                                                        (13)

If q = 0.1 the possible landing point displacement is of  ±8.5 km. This value is 1.4 times less than
in the case of reentry angle  of θen = -3o.
     For ballistic reentry vehicle a lift force coefficient is zero in nominal case (CL=0), and any
displacement of c.m. from symmetry axis is one of the most significant disturbing factors. It
violates the axial symmetry of vehicle mass distribution while the aerodynamic shape retains the
axial symmetry. As a result, a trim angle of attack αtrim  arises that is almost constant during flight
into the atmosphere. The angle of attack produces a lift force L that  changes the ballistic reentry
trajectory in controlled one with casual guidance law. A disturbing force acts in the orthogonal
plane to the air velocity V. A direction of lift force L in this plane is random that produces a
casual guidance law.
   A disturbance of  ballistic trajectory depends on lift-to-drag ratio ktrim = L/D = CL/CD. In linear
approximation, derivative of lift-to-drag ratio with respect to c.m. displacement from symmetry
axis (-yF) is described by equation (Sikharulidze, 1999, NT-164)

    dktrim/dyF = -CL
α/[CDb(xF/b)(1+ CL

α/CD)].                                                                               (14)

Here CL
α = ∂CL/∂α is a derivative of lift coefficient with respect to the angle of attack, b is a main

linear size of vehicle (diameter or length), xF/b is a static stability margin. For Apollo shape
reentry vehicle there are at αtrim = 0: CD ≈1.2, CL

α ≈-1.01 rad-1. If static stability margin is of xF/b
=-0.1 (typical value) and b=1 m, then dktrim/dyF ≈-0.053 mm-1. It means that c.m. displacement on
1 mm only produces lift-to-drag ratio ktrim≈ 0.053. If the entry angle is of θen=-3o, this value of
ktrim may generate downrange error of -46 km...+60 km and crossrange error of  ±12 km. If θen=-
4o, there are the downrange error of -33 km...+44 km and crossrange error of  ±10 km. Vehicle
rotation around symmetry axis with angular velocity of ωx =10...20 degree/s (roll rate) allows
significantly reduce (almost to zero) the effect of c.m. displacement from symmetry axis.
Efficient action of arisen lift force is near zero, and descent trajectory is close to ballistic one.

2.4. Estimation of landing accuracy

    Analysis of landing point accuracy under considered set of disturbances includes calculation
more than 5000 reentry trajectories.
    Preliminary estimation of landing accuracy in linear approximation may be obtained by partial
derivatives of downrange and crossrange with respect to disturbing factors. There are four groups



of errors. Errors of the first group affect on landing point directly (de-boost impulse execution
time δtdb  and side component of de-boost impulse  ∆Vsd). The total error of execution time takes
into account the non-nominal value of thrust  (δP = ± 1%)  and delay of engine input valve during
switch-on and switch-off. An error of the second group [error of de-boost impulse value δ(∆V)]
disturbs reentry parameters at the boundary of atmosphere and, as a result, produces a dispersion
of landing point. The error of de-boost impulse value takes into account the error of integrator
(± 0.5%) and dispersion of thrust impulse during switch-off (±5%).  In this case the atmospheric
phase of trajectory significantly influences on dispersion of landing point. An error of the third
group (error of engine orientation in the motion plane) in linear approximation does not influence
on the landing accuracy. Errors of the fourth group are not related with de-boost maneuver
(disturbed atmosphere, non-nominal ballistic coefficient, c.m. displacement from symmetry axis).
    All results of landing accuracy analysis are presented in  Table 1. One can see that among
downrange errors the biggest component  is due to error of de-boost impulse value. The second
reason is disturbed atmosphere. Non-nominal drag coefficient and c.m. displacement from
symmetry axis generate approximately equal errors. The total downrange error  ( ±3σL ) is of
∆LΣ = ±28.6 km for reentry angle of θen= -3o and   ± 21.8 km for reentry angle of θen= -4o.

                                         Table 1. Main components of landing point error, km

Group                    Reason of error        Reentry angle
       -3o     -4o

                                     Downrange errors
      1         Execution time of de-boost impulse (δP = ±1%)
      2         Error of de-boost impulse value  (±0.5%)
      3         Error of de-boost engine orientation in the motion
                 plane (pitch angle ϑ= ±1.5o)
      4         Disturbed atmosphere (CMEDA)
                 Non-nominal drag coefficient  (δσD = ±10%)
                 Displacement of c.m. from symmetry axis

                 Total downrange error  (±3σL)

    ± 1.67    
   ± 18.71
        0

    ± 14.5
   ± 12.0
   ± 10.5

  ± 28.6*
   ± 26.6**

    ± 2.55
  ± 14.03
        0

  ± 12.1
    ± 8.7
    ± 7.0

   ± 21.8*
   ± 20.7**

                                     Crossrange errors
      1        Error of de-boost engine orientation in
                the horizontal plane (yaw angle ψ = ±1.5o)
      4        Disturbed atmosphere (CMEDA)
                Displacement of c.m. from symmetry axis

                Total crossrange error  (±3σB)

    ± 4.77

     ± 3.6
     ± 2.4

     ± 6.4*
     ± 6.0**

    ± 6.3

    ± 3.4
    ± 2.1

    ± 7.5*
    ± 7.2**

      *  Without angular rotation
      ** With roll rate of ωx =10...20 degree/s



    Among crossrange errors the biggest one is due to error of de-boost impulse orientation out of
motion plane. The second reason (on value) is disturbed atmosphere. The total crossrange error
(±3σB)  is of ∆BΣ= ±6.4 km for reentry angle of θen= -3o and  ±7.5 km for reentry angle of θen=-4o

(Sikharulidze, 1999, NT-170).
    If vehicle rotates around symmetry axis with angular velocity of ωx =10...20 degree/s, the total
downrange error will be of ∆LΣ = ±26.6 km for reentry angle of θen= -3o and ±20.7 km for reentry
angle of θen=-4o. The total crossrange error will be of ∆BΣ= ±6.0 km for reentry angle θen=-3o and
 ±7.2 km for reentry angle of θen=-4o. Accuracy increases insignificantly due to assumption about
small c.m. displacement from symmetry axis (only ±0.2 mm). In case of bigger displacement a
difference will be more significant.
     Obtained accuracy of landing point depends on accepted assumptions about errors of de-orbit
maneuver and parameters of vehicle, disturbed atmosphere, etc. May be this accuracy is
optimistic one but it illustrates an order of expected landing accuracy. To guarantee the landing
within given polygon, it is necessary to have a reserve (about of 20...30%) for compensation of
non-considered disturbances and inaccuracy of motion model. Really, it is impossible to provide
a high landing accuracy for ballistic reentry vehicle. Very often this task has solution by use the
guided parachute system at the final phase of trajectory.
     The modern guided parachute can provide lift-to-drag ratio of kpar = L/D = 2. It means that
horizontal transfer may be 2 times bigger than vertical one. If parachute starts operation at
altitude of  Hpar = 15 km  it can compensate landing error about of 30 km. For Hpar = 10 km it can
compensate landing error about of 20 km. The tracking ground radar that measures a distance to
vehicle (may be, velocity also) and angular position can provide correction of motion at the
landing phase. The onboard equipment for parachute control may be very simple.
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