MODELO DE SUSPENSÃO MacPHERSON UTILIZANDO TRANSFORMADORES CINEMÁTICOS

Jorge A. M. Góis e-mail: jamg@epq.ime.eb.br Clódio A. P. Sarzeto e-mail: de4sarzet@eqp.ime.eb.br Instituto Militar de Engenharia, Departamento de Engenharia Mecânica Pça Gal Tibúrcio, 80, Praia Vermelha, Rio de Janeiro –RJ, CEP: 22290-270

Resumo

Este trabalho objetiva modelar uma suspensão automotiva do tipo MacPherson utilizando Transformadores Cinemáticos (T.C.), que permite a obtenção do modelo em um número mínimo de coordenadas correspondentes aos graus de liberdade (G.L.) do sistema, bem como possibilita a obtenção de modelos de solução fechada para a cinemática, ocasionando uma redução, em geral drástica, no número de equações de movimento, obtidas explicitamente. Há então necessidade de uso de métodos numéricos apenas para a integração do sistema de equações da dinâmica, que se torna rígido necessitando o uso de métodos especiais.

Palavras chave: Cinemática, Dinâmica, Transformadores, suspensão MacPerson

1. INTRODUÇÃO

A análise da cinemática e dinâmica da suspensão MacPherson utilizando Transformadores Cinemáticos torna possível obter um modelo retendo todas as características não lineares da geometria da suspensão, modelo este gerado em n^o mínimo de coordenadas.

Figura 1 – Modelo multi-corpos (suspensão diant. dir.)

2. REPRESENTAÇÃO MULTI-CORPOS

Seguindo a numeração da Figura 1, o sistema é modelado tomando como referencial o corpo *1*, podendo assim depois incorporar-se a suspensão a um modelo do veículo. Examinando o modo de interconeconexão dos corpos, modela-se estas ligações através de juntas cinemáticas, mostradas na Tabela 1, bem como seus graus de liberdade e parâmetros.

Tipo	Parâmetros	<i>G.L</i> .
Revolução	Eixo \overrightarrow{OA}	1
Esférica	Centro \vec{B}	3
Cilíndrica	Eixo \overrightarrow{BC}	2
Universal	Centro \vec{C}	2
Esférica	Centro \vec{D}	3
Universal	Centro \vec{E}	2
Translação	Eixo y	1
Revolução	Eixo \overrightarrow{HG}	1

TABELA 1 – Juntas Cinemáticas do modelo

Da Tabela 1, pela aplicação do Critério de Grübler, vê-se que o sistema de suspensão isolado possui um total de três graus de liberdade, como mostra a Equação 1:

$$f = 6 \cdot n_B - \sum_{i=1}^{n_B} \left(6 - f_{G_i} \right) = 6.6 - (5 + 3 + 4 + 4 + 3 + 4 + 5 + 5) = 3$$
(1)

onde n_B é o número de corpos do mecanismo e f_{Gi} o número de G.L. restringidos pela junta *i*, sendo tomadas como variáveis de entrada o ângulo da bandeja em relação à vertical, a rotação da roda em torno da manga de eixo e o deslocamento da cremalheira da direção.

3. TRANSFORMADORES CINEMÁTICOS

As equações da dinâmica para sistemas multi-corpos são obtidas a partir das equações de Newton-Euler para cada corpo rígido, utilizando os princípios de D'Alembert e dos Trabalhos Virtuais, chegando à forma abaixo

$$\sum_{i=1}^{n_{B}} \left[\left(\Xi_{i} \cdot \ddot{s}_{i} + b_{i} \right) - w_{i}^{e} \right]^{T} \cdot \delta s_{i} = 0$$
⁽²⁾

onde s_i é o vetor de posição e orientação de um referencial fixo no centro de massa do corpo *i* em relação ao referencial inercial, Ξ_i é o tensor de inércia do corpo b_i representa o efeito das forças giroscópicas, w_i^e as forças externas aplicadas e δs_i os deslocamentos virtuais.

Os deslocamentos virtuais devem ser admissíveis (compatíveis com as restrições cinemáticas do problema), podendo-se (na maioria das vezes), escrever uma relação de dependência entre eles (Hiller & Kecskeméthy, 1986) do tipo $\delta s = J \cdot \delta q$, onde q é um conjunto de variáveis independentes e J é a matriz jacobiana da cinemática. Estendendo esta relação a velocidades e acelerações, substituindo na Eq. (2), chega-se às eqs. de movimento reduzidas

$$M(q) = \sum_{i=1}^{N_B} J_i^T \cdot \Xi_i \cdot J_i$$

$$M(q) \cdot \ddot{q} + B(q, \dot{q}) = Q(q, \dot{q}) \qquad \therefore \qquad B(q, \dot{q}) = \sum_{i=1}^{N_B} J_i^T \cdot \left(\Xi_i \cdot \dot{J}_i \cdot \dot{q} + b_i\right) \qquad (3)$$

$$Q(q, \dot{q}) = \sum_{i=1}^{N_B} J_i^T \cdot w_i^e$$

A matriz jacobiana é obtida a partir da equações de fechamento de cadeias cinemáticas previamente selecionadas como Transformadores Cinemáticos. Tais cadeias formam uma base capaz descrever a topologia do sistema.

4. MODELAGEM DA SUSPENSÃO

Na Figura 2 é visto o grafo equivalente (Kecskeméthy, Hiller & Krupp,1997) ao sistema, montado por meio de juntas elementares (círculos brancos), corpos fictícios (elipses brancas) entre as juntas elementares que fazem parte de uma mesma junta física e corpos reais (elipses cinzas).

Figura 2 – Grafo da suspensão

Sendo n_G o número de juntas elementares do mecanismo são selecionadas $n_L = n_G - n_B =$ =8 - (7-1) = 2 transformadores cinemáticos. A partir do grafo equivalente mostrado na Figura 2, onde os corpos reais são vértices, e as juntas, arestas (de comprimento igual ao n^o de graus de liberdade da junta física correspondente), seleciona-se os caminhos mínimos entre vértices:

K	1	2	3	4	5	6	7
1		12	12,23	15,54	15	16	16,63,37
2	21		23	21,15,54	21,15	21,16	23,37
3	32,21	32		34	34,45	36	37
4	45,51	45,51,12	43		45	43,36	43,37
5	51	51,12	54,43	54		51,16	54,43,37
6	61	61,12	63	63,34	61,15		63,37
7	73,36,61	73,32	73	73,34	73,34,45	73,36	

TABELA 2 - Caminhos mínimos

Tomando cada par de vértice e aresta são montadas os ciclos mínimos conectando-se este par por meio dos caminhos mínimos, surgindo assim 40 ciclos, dos quais são desconsiderando ciclos repetidos (pois não são independentes) e degenerados, obtendo-se: $C_{163} \rightarrow \text{corpos 1632}$ e comprimento 8; $C_{153} \rightarrow \text{corpos 1}$, 5, 4, 3, 6 e comprimento 10; $C_{164} \rightarrow \text{corpos 1}$, 6, 3, 4, 5 e comprimento 10. Desses deve-se retirar os independentes, sendo então selecionada a base de ciclos mínimos, composta pelas cadeias C_{163} e C_{164} e para os quais são estabelecidas coordenadas relativas β_i (Gois, 2000) conforme a Figura 3.

O primeiro transformador C_{163} é pertinente ao movimento vertical da suspensão, o qual possui 3 G.L., um dos quais corresponde à rotação relativa entre os corpos 3 e 6, que é calculada no 2° transformador C_{164} , o qual refere-se basicamente ao sistema de esterçamento. No 1° há 2 G.L., tomando-se β_1 e β_5 como coordenadas independentes deste ciclo. A coordenada β_1 rege o movimento vertical da suspensão, enquanto β_5 , a rotação da roda. No 2° há um total de 10 coordenadas relativas nesta cadeia, onde 4 são independentes.

Figura 3 - Coordenadas relativas do 1º (esq.) e de 2º (dir) transformadores

4.1 Primeiro Transformador

Com auxílio da Tabela 2, Escolhe-se um par característico de juntas, onde a cadeia é aberta para formular equações de fechamento (Hiller & Woernle,1988). O par que proporciona maior eliminação de coordenadas é formado pela junta universal em \vec{C} e a esférica em \vec{B} , fornecendo apenas 1 equação característica. Considerando as coordednadas independentes e o elemento de isotropia de distância entre pontos, tem-se:

$$g_1 = \beta_1 - q_1 = 0 \tag{4}$$

$$g_5 = \beta_5 - q_2 = 0 \tag{5}$$

$$g_{2} = \left| \overrightarrow{BC} \right| - (p - \beta_{2}) = 0 \qquad \therefore \qquad \overrightarrow{BC} = \overrightarrow{MC} - R_{0} \cdot \left| \begin{array}{c} 0 \\ \left| \overrightarrow{MB} \right| \cdot sen(\beta_{1}) \\ \left| \overrightarrow{MB} \right| \cdot \cos(\beta_{1}) \end{array} \right|$$
(6)

sendo q_1 e q_2 diretamente as entradas do sistema, p é o comprimento máximo que o telescópio pode assumir, \overrightarrow{MC} e $|\overrightarrow{MB}|$ constantes, e R_i são matrizes de rotação dos sistemas locais.. Esta equação provem do fato da distância entre os centros das juntas do par característico ser a mesma medida por qualquer dos ramos em que foi aberta a cadeia. A equação característica dada pela eq. 6 pode ser resolvida analiticamente como um função de β_I e portanto, para esta cadeia, não há necessidade do uso de métodos iterativos de solução. O restante das coordenadas são obtidas por equações de formuladas recursivamente utilizando ângulos de Euler para a orientação dos corpos. Sendo \vec{n} o unitário na direção \overrightarrow{BC} :

$$g_3 = sen(\beta_3) - n_z = 0 \tag{7}$$

$$g_{4} = \frac{n_{x}}{\sqrt{1 - \beta_{3}^{2}}} - sen(\beta_{4}) = 0$$
(8)

4.2. Segundo Transformador

Coordenadas do 1° transformador passam a ser entradas para o 2°. A quarta coordenada independente é β_9 , o deslocamento da cremalheira.Assim:

$$g_6 = \beta_6 - \beta_2 = 0 \tag{9}$$

$$g_7 = \beta_7 - \beta_3 = 0 \tag{10}$$

$$g_8 = \beta_8 - \beta_4 = 0 \tag{11}$$

$$g_{8} = \beta_{8} - \beta_{4} = 0 \tag{11}$$

$$g_{9} = \beta_{9} - q_{3} = 0 \tag{12}$$

Das 6 coordenadas dependentes, apenas uma é de interesse para a definição da cinemática do ciclo: a rotação relativa no eixo na junta cilíndrica, dada por β_{I0} . Escolhe-se como par característico as juntas universal em \vec{E} e esférica em \vec{D} , eliminando do equacionamento as cinco coordenadas relativas a estas juntas. Com $\left| \vec{DE} \right|, \vec{CI}, \left| \vec{FD} \right|$ e $\left| \vec{FB} \right|$ tirados diretamente da geometria da suspensão, utiliza-se o elemento de isotropia de distância entre os pontos \vec{D} e \vec{E} , levando à seguinte equação característica:

$$g_{10} = \left| \overrightarrow{CF} + \overrightarrow{FD} - \overrightarrow{CI} - \overrightarrow{IE} \right| - \left| \overrightarrow{DE} \right| = 0$$
(13)

que toma forma mostrada em eq. 14 com solução na dada por eq. 15, permitindo extrair a expressão de β_{10} no intervalo (- π , π) como mostrado em eq. 16.

$$a_{1}(\beta_{6},\beta_{7},\beta_{8},\beta_{9}) \cdot \cos(\beta_{10}) + a_{2}(\beta_{6},\beta_{7},\beta_{8},\beta_{9}) \cdot \sin(\beta_{10}) = a_{3}(\beta_{6},\beta_{7},\beta_{8},\beta_{9})$$
(14)

$$x_{i} = [\cos(\beta_{10})]_{i} = \frac{a_{1} \cdot a_{3} - (-1)^{i} \cdot a_{2} \cdot \sqrt{a_{1}^{2} + a_{2}^{2} - a_{3}^{2}}}{a_{1}^{2} + a_{2}^{2}}$$

$$y_{i} = [sen(\beta_{10})]_{i} = \frac{a_{2} \cdot a_{3} + (-1)^{i} \cdot a_{1} \cdot \sqrt{a_{1}^{2} + a_{2}^{2} - a_{3}^{2}}}{a_{1}^{2} + a_{2}^{2}}$$

$$i = 1, 2$$

$$(15)$$

$$\beta_{10}^{(i)}(\beta_6, \beta_7, \beta_8, \beta_9) = \frac{1}{2\pi} [\operatorname{sgn}\{y_i\} - 1] + a \cos[\operatorname{sgn}\{y_i\} \cdot x_i]$$
(16)

Tomando todas as retrições apresentadas forma-se o vetor de restrições deste transformador de todo o sistema que derivado parcialmente em relaçõ às coordenadas relativas fornece a jacobiana da cinemática relativa.

4.3. Cinemática Absoluta

Devem agora ser estabelecidas as equações da cinemática absoluta, definindo-se os corpos relevantes para a dinâmica do sistema (Silva, 1985), de modo que a jacobiana global relacione as coordenadas destes corpos às entradas do sistema, sendo selecionados 2, 3 e 7. Sendo \vec{H} o centro de massa da roda, \vec{G} o do corpo 3, e \vec{Q} o da bandeja, obtendo-se os comprimentos de \vec{HG} e de \vec{HB} diretamente da geometria da suspensão, bem como o ângulo χ entre eles:

$$\vec{H} = \vec{C} + R_1 \cdot \begin{bmatrix} 0\\ p - \beta_2 - \left| \overrightarrow{HB} \right| \\ 0 \end{bmatrix}$$
(17)

$$\vec{G} = \vec{H} + R_1 \cdot R_2 \cdot R_3 \cdot \begin{bmatrix} 0\\0\\|\overline{HG}| \end{bmatrix}$$
(18)

$$\vec{Q} = \frac{\vec{A} + \vec{O} + \vec{B}}{3} = \frac{\vec{A} + \vec{O} + \vec{M} + \vec{MB}}{3}$$
(19)

que, derivando em relação ao tempo, fornece as velocidades lineares absolutas. No entanto, a obtenção direta das velocidades angulares é, neste caso, mais simples, sendo:

$$\boldsymbol{\omega}_{H} = \begin{bmatrix} \cos \boldsymbol{\beta}_{8} \\ sen \boldsymbol{\beta}_{8} \\ 0 \end{bmatrix} \cdot \dot{\boldsymbol{\beta}}_{7} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} \cdot \dot{\boldsymbol{\beta}}_{8}$$
(20)

$$\omega_{G} = \omega_{H} + R_{I} \cdot \left(\begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix} \cdot \dot{\beta}_{10} + R_{2} \cdot R_{3} \cdot \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix} \cdot \dot{\beta}_{5} \right)$$
(21)

$$\omega_Q = R_0 \cdot \begin{bmatrix} -1\\0\\0 \end{bmatrix} \cdot \dot{\beta}_1 \tag{22}$$

de modo que a matriz jacobiana absoluta é montada a partir das velocidades absolutas, tomando-se os coeficientes das velocidades relativas. O produto desta pela matriz jacobiana da cinemática relativa fornece a matriz jacobiana global.

4.4. DINÂMICA

Tomando como base as Eqs. 4 e 5 para montar as equações de movimento, resta definir as forças e torques externos aplicados w^e . São considerados os pesos de cada corpo, a força de contato do pneu e a força devido ao conjunto mola / amortecedor, dada por:

$$w_s'' = R_I \cdot \begin{bmatrix} 0\\ (\beta_2 - l_{10}) \cdot k_1 + \dot{\beta}_2 \cdot c\\ 0 \end{bmatrix}$$
(23)

onde k_1 é o módulo de elasticidade da mola da suspensão, l_{10} é o comprimento livre da mola e c, a constante de amortecimento do amortecedor da suspensão; sendo todos os elementos de força da suspensão considerados lineares. O pneu é modelado como uma mola elástica linear, levando em conta o efeito dos ângulos de camber δ , e de esterçamento γ , obtidos a partir da cinemática, sendo a força no referencial global dada por:

$$w_{p}'' = \begin{bmatrix} -w_{p}' \cdot sen\delta \cdot sen\gamma \\ -w_{p}' \cdot sen\delta \cdot \cos\gamma \\ w_{p}' \cdot \cos\delta \end{bmatrix} \qquad \therefore \qquad w_{p}' = -k_{2} \cdot \frac{G_{z} - l_{20}}{\cos\delta}$$
(24)

sendo que a força do conjunto mola / amortecedor é considerada atuando entre os corpos 3 e 6, e força de contato do pneu sobre o corpo 7.

5. RESULTADOS

Utilizando processadores simbólicos foram montadas as equações de movimento do sistema, posteriormente traduzidas para FORTRAN. Para estudar a cinemática variou-se a posição vertical do centro da roda de $\pm 0,15$ m em torno da sua posição de equilíbrio (0,3m), mantendo-se a entrada da cremalheira nula. Nas Figura 4 se mostra o comportamento não linear da suspensão devido à sua geometria.

Figura 4 – Projeção x-z da posição da roda (esq.), projeção y-z da posição da roda (dir.)

Figura 5 – Ângulo de camber (esq.), ângulo de esterçamento (dir.)

Na Figura 5 pode-se ver as variações dos ângulos de camber e esterçamento em função da posição vertical, sendo notórios a inversão no sinal do camber e o comportamento sobre esterçante da suspensão.

Figura 6 - Posição (esq.), velocidade (meio), aceleração (dir.) verticais da roda

Na Figura 6 são vistos os resultados de posição, velocidade e aceleração obtidos a partir da simulação da dinâmica do sistema. Parte-se de velocidades e acelerações iniciais nulas, exceto pela rotação da roda que é de 14,8 r.p.s., sendo a posição inicial do centro da roda de 0,325m e as forças aplicadas aquelas mencionadas no item 4.

Utilizando o método de *Runge-Kutta* de 5^a ordem para integração, obteve convergência com passo de integração de pelo menos 10^{-4} s, utilizando um passo interno variável. Ele levou mais de 6min em um computador *Pentium*® de 233MHz e 128Mb de memória *RAM* para simular o comportamento do sistema durante 1s, utilizando a rotina *DIVPRK* em *FORTRAN*, da biblioteca de rotinas numéricas *IMSL* (IMSL Math / Library User's Manual). Isto deve-se ao fato de que a representação do sistema em um número mínimo de coordenadas torna o modelo bastante rígido, sendo necessário então o uso de métodos especiais de integração, sendo utilizado então o método de *Gear*, a partir da rotina *DIVPAG* também do pacote *IMSL*, ocorrendo convergência também para passo igual a 10^{-4} s, com passo interno variável e controle de erro relativo. Com isso, para a simular 1s do sistema precisa-se de um tempo de máquina de 13s.

O emprego dos Transformadores Cinemáticos mostra-se eficaz para obtenção de um modelo não linear que descreva completamente a geometria do sistema (Sarzeto, 1995), permitindo ainda a inclusão de restrições não holonômicas, além de ser baseado nos graus de liberdade do sistema; o que muitas vezes facilita o projeto do sistema de controle, dependo das variáveis visadas. Os resultados obtidos são compatíveis com outros trabalhos (Silva, 1985), mostrando a validade do modelo.

6. REFERÊNCIAS

- 1. GOIS, Jorge A. M. Modelagem de Suspensão ativa utilizando Transformadores Cinemáticos. Tese de Mestrado, Dep. de Eng. Mecânica e de Materiais / IME, Rio de Janeiro RJ/BR, 2000.
- 2. HILLER, M. & WOERNLE, C. The Characteristic Pair of Joints An Effective for Inverse Kinematc Problem of Robots. IEEE, 1988, CH2555-1.
- 3. IMSL Math / Library User's Manual. Microsoft Corporation, 1995.
- KECSKEMÉTHY, A., HILLER, M., KRUPP, T. Symbolic Processing of Multiloop Mechanism Dynamics Using Closed-Form Kinematics Solutions. Multibody Systems Dynamics, 1997, 1, p. 23-45.
- 5. SARZETO, C. A. P., **Transformadores Cinemáticos para Mecanismos Básicos**. Anais COBEM/CIDIM, BR, 1995.
- SILVA, M. S. Aplicação de parâmetros de Euler em modelagem de suspensão do tipo MacPehrson. Tese de Mestrado, Dep. de Eng. Mecânica e de Materiais / IME, Rio de Janeiro - RJ/BR, 1995.