AVALIAÇÃO DE PARÂMETROS OPERACIONAIS DO CICLO TÉRMICO DE UMA PLANTA FRIGORÍFICA DE GRANDE PORTE

Orozimbo A. A Rego (Universidade Federal de Uberlândia) Cassius Ricardo Nasc. Ferreira (aluno mestrado UFU)

Resumo

No presente trabalho é analisado o comportamento do COP de uma planta frigorífica de grande porte em função de parâmetros operacionais da instalação. A avaliação é feita através da simulação numérica do ciclo térmico, que opera com amônia como fluido frigorífico, realiza a compressão em estágios com resfriamento intermediário e subresfriamento e produz frio em três níveis de temperatura de evaporação. São apresentados e analisados resultados que avaliam os processos de compressão e de condensação e da distribuição da carga térmica em diferentes temperaturas.

Palavras-chave: Refrigeração, Simulação Numérica.

1. INTRODUÇÃO

No presente trabalho são apresentados resultado para o COP, Coeficiente de Performance, da planta frigorífica de uma industria de carnes de grande porte instalada no município de Uberlândia - MG.

O estudo do COP, obtido através de um modelo que simula a planta, tem por finalidade estabelecer parâmetros de operação para as propriedades termodinâmicas do ciclo frigorifico que opera com amônia.

O modelo permite também estabelecer estratégias de operação da fabrica, que produz embutidos, defumados, alimentos "in natura" e outros produtos, em diversos níveis de produção e temperaturas, visando diminuir os custos para a produção do frio necessário, através de valores adequados para o COP da instalação.

A planta frigorifica foi concebida originalmente para atender uma carga térmica de aproximadamente 4000 KW para uma fabrica que faria abate de bovinos e suínos para industrialização e de comercialização das carnes mais nobres. Devido a alteração no mercado a fabrica tem abatido apenas suínos , não processando carnes "in natura", fazendo com que a demanda de frio diminua , apesar das instalações atualmente também estarem sendo utilizadas para o congelamento de carcaças de frango . Essa demanda corresponde atualmente a em torno de 60% da capacidade de produção de frio instalada.

2. DESCRIÇÃO DA PLANTA ESTUDADA

A Figura 1 apresenta de maneira esquemática a planta frigorifica que opera com amônia num ciclo de compressão em estágios com resfriamento intermediário e subresfriamento e com três níveis de temperatura de evaporação nos separadores de liquido . A condensação é feita num único nível de pressão através de uma bateria de condensadores evaporativos.

Os separadores de liquido são montados cada um com dois vasos em paralelo, que permite a operação e a manutenção adequada dos mesmos.

No separador de liquido SL1, a amônia opera a uma temperatura que oscila em torno dos -45° C e é bombeada para atender a demanda de frio dos túneis de choque térmico de carcaças, nos túneis de congelamento helicoidais e nos túneis contínuos longitudinais, que operam com temperaturas internas em torno dos -35° C.

O segundo separador SL2, opera a -35°C aproximadamente e fornece amônia a esta temperatura para as câmaras de estocagem de produtos, essas câmaras, em número de 100 aproximadamente na fabrica, operam em diversos níveis de temperatura variando de -30°C até 5°C.

O separador de líquido SL3 opera a -12°C e a amônia produzida é utilizada basicamente para a produção de água gelada com glicol a aproximadamente 0°C.

Essa água gelada e utilizada em " fan - coils", para o condicionamento do ar dos ambientes da fabrica (abate , desossa , industrialização e circulação) que operam com temperatura e umidade controladas.

Nos dois primeiros níveis de evaporação ($-45^{\circ}C e - 35^{\circ}C$), a compressão e feita em dois estágios, primeiro dos separadores de líquidos para o resfriador intermediário, e deste para o condensador e deposito de refrigerante.

No nível de evaporação de ($-12^{\circ}C$) a compressão e feita num único estagio do separador de liquido para o condensador.

Figura 1 – Esquema da instalação

A amônia que alimenta os dois primeiros separadores de liquido sofre um processo de sub - resfriamento no resfriador intermediário, 11 para 12, o que não ocorre no terceiro separador.

Os estágios de compressão são realizados por compressores de parafuso, instalados em paralelo com a refrigeração do óleo lubrificante sendo feita por amônia a alta pressão que é depois recondensada.

A instalação esta devidamente instrumentalizada em termos industriais, para atender os aspectos de controle de operação do sistema, sendo que a carga de refrigerante nos compressores é regulada, de acordo com a demanda de frio, pelo nível de pressão nos separadores de liquido.

3. O MODELO

O modelo desenvolvido permite avaliar para o ciclo, o coeficiente de performance teórico, COP, definido por:

COP = (CT1 + CT2 + CT3)/(PBP1+PBP2+PAP1+PAP2)

onde:

CTi = Carga térmica atendida pelo separador de líquido SLi. PBPi = Potência teórica consumida no estágio de baixa pressão BPi. PAPi = Potência teórica consumida no estágio de alta pressão APi.

O modelo foi desenvolvido através do balanço de energia nos diversos componentes do ciclo para regime permanente de onde foram obtidos também os valores das potencias consumidas, calores trocados nos equipamentos e fluxos de refrigerante nos diferentes pontos do ciclo.

Não estão apresentados resultados neste trabalho, mas o modelo permite também estimar a potência consumida nos processos de bombeamento de amônia com base na perda de carga das linhas e do fluxo de amônia necessário para se executar o processo de resfriamento do óleo lubrificante dos compressores.

4. RESULTADOS

Com a finalidade de se visualizar os níveis de operação do ciclo, a Tabela 1 apresenta os valores das propriedades termodinâmicas dos diversos pontos do ciclo. Os valores das pressões e temperaturas foram obtidos através de instrumentação existente na planta e as demais, entalpia, entropia, volume específico e título através de software apropriado. Como ilustração, foram estimadas as perdas de carga nas linhas de circulação de amônia.

A Tabela 2 fornece os valores das descargas de refrigerante nos diversos pontos do ciclo, obtidos considerando-se as cargas térmicas originais de projetos nos separadores de líquido, SL1, SL2 e SL3, respectivamente de 300, 300 e 400 Toneladas de Refrigeração (TR). Para esta situação, o COP teórico calculado do ciclo foi de 3,904.

Os valores das descargas de circulação de amônia nos evaporadores, EV1, EV2 e EV3, foram obtidos admitindo-se uma taxa de evaporação nos mesmos respectivamente de 10%, 12% e 5%.

PONTO	Р	Т	Н	S	V	X
	(BAR)	(°C)	(KJ/KG)	(KJ/KG.°C)	(M3/KG)	
1	0,544	-45	1383	6,061	2,011	1
2	2,681	40	1553	5,93	0,5566	-
3	0,9298	-35	1399	5,874	1,219	1
4	2,681	31	1532	5,864	0,539	-
5	2,681	35,53	1542	5,897	0,5479	-
6	2,681	-12	1432	5,508	0,4516	1
7	11,71	80	1610	5,413	0,1375	-
8	2,681	-12	1432	5,508	0,4516	1
9	11,71	80	1610	5,413	0,1375	-
10	11,71	80	1610	5,413	0,1375	-
11	11,71	24	296,1	1,113	0,001655	-
12	11,71	14	247,7	0,9469	0,001616	-
13	0,544	-45	247,7	1,087	0,3864	0,1915
14	0,544	-45	-21,05	-0,09116	0.001438	0
15	2,044	-45	-20,84	-0,09116	0,001438	-
16	0,544	-45	-20,84	-0,09021	0,001747	0,000154
17	0,544	-45	119,3	0,524	0,2024	0,1
18	0,9298	-35	247,7	0,2015	0,1643	-
19	0,9298	-35	21,4	0,09066	0,001463	0
20	2,13	-35	21,57	0,09066	0,001463	-
21	0,9298	-35	21,57	0,0914	0,001618	0,000128
22	0,9298	-35	186,7	0,7847	0,1476	0,12
23	2,681	-12	296,1	1,16	0,06077	0,1316
24	2,681	-12	296,1	1,16	0,06077	0,1316
25	2,681	-12	124	0,5007	0,001528	0
26	3,781	-12	124,2	0,5007	0,001528	-
27	2,681	-12	124,2	0,5013	0,001586	0,000129
28	2,681	-12	189,4	0,7511	0,02403	0,05
29	11,71	30	1469	0,5213	0,1175	-

Tabela 1- Propriedades termodinâmicas do ciclo da instalação

As descargas de amônia nos resfriadores de óleo foram estimadas através de balanço térmico e determinado o fluxo de amônia necessário para retirar o calor durante o processo de compressão atingindo-se as temperaturas de recalque medidas.

A partir deste ciclo básico e utilizando-se o modelo desenvolvido, apresenta-se á seguir uma análise da influência de alguns parâmetros de operação no COP da instalação.

Um importante fator a ser analisado são as condições de resfriamento do processo de compressão. A intensidade deste resfriamento é influenciada por condições de projeto, de operação e, fica diretamente caracterizada pela temperatura de descarga do compressor. Quanto mais baixos esses valores, mais intenso terá sido o processo de refrigeração. As Figuras 2 e 3 a seguir, apresentam respectivamente as variações do COP da instalação, em função das temperaturas de descarga dos compressores de alta e de baixa.

NÚMERO	VAZÃO
	(KG/HR)
1	3342
2	3294
3	6636
4	7694
5	4453
7	12147
8	929,8
9	27058
10	22965
11	77529
12	119,6
13	9,217
14	224,1
15	129,7
16	482,6

Tabela 2 – Vazão de amônia nos pontos da instalação de acordo com a Figura 1

Pode-se constatar através da Figura 2 que uma variação de 30°C na temperatura de descarga dos compressores de alta pode significar teoricamente, uma variação de 12% no COP. A variação imposta no processo de resfriamento do estágio de baixa pressão, Figura 3, como esperado, influi de maneira menos significativa naquele coeficiente.

Figura 2 – Influência do resfriamento nos estágios de alta pressão AP1 e AP2.

Figura 3 – Influência do resfriamento no estágio de baixa pressão BP2

As condições climáticas, temperatura e umidade relativa, além de influir de maneira bastante significativa na carga térmica da instalação, provocam alterações significativas no processo de condensação do ciclo frigorífico por operar com condensadores evaporativos.

A Figura 4 ilustra a variação no COP da instalação como função do grau de subresfriamento no condensador causado por possíveis condições de operação.

Figura 4 – Influência do subresfriamento no condensador

Já a Figura 5, mostra a variação do COP com a temperatura de condensação que pode ser conseguida através de regulagem no sistema.

Pode-se constatar que, para as faixas de variação de temperaturas possíveis de serem conseguidas, as condições de condensação influem de maneira menos significativa no COP do que a maneira como é realizada o processo de resfriamento da compressão.

Figura 5 – Influência da temperatura de condensação

A variação das condições de subresfriamento no resfriador intermediário influem pouco no COP como pode ser constatado através da Figura 6 onde uma variação de 18°C no valor do grau de subresfriamento, implica numa variação de 2% no COP.

Figura 6 – Influência do subresfriamento no resfriador intermediário

Uma outra análise que pode ser feita utilizando o modelo, é da possível transferência de carga térmica de um nível de temperatura de evaporação para outro. Isto pode ser feito, por exemplo, transferindo o local de processamento de produtos quando possível.

A figura 7 mostra o ganho no COP da instalação ao transferirmos gradativamente a carga térmica do separador de líquido SL1 para o SL3 que opera com temperatura de evaporação mais alta.

Figura 7 – Influência dos níveis de temperatura da carga térmica

Esta influência e bastante significativa ao constatarmos através da Figura 7 que o valor do COP pode variar até 30%.

5. CONCLUSÃO

Apesar da simplicidade do modelo, desenvolvido para uma situação de regime permanente, o mesmo permite avaliações preliminares que podem contribuir na tomada de decisões no que diz respeito a parâmetros térmicos de operação e de estratégia de produção da fábrica visando diminuir os custos com energia elétrica na produção do frio. Esta análise preliminar permite também constatar a importância da refrigeração no processo de compressão. O modelo está sendo aprimorado considerando o regime não regular de operação do ciclo e incluindo no mesmo outros equipamentos, sistemas e a carga térmica nos diversos pontos de consumo de frio.

6. REFERÊNCIAS

- Stoecker, W.F. e Jones, W.J.; "Refrigeração e Ar Condicionado"; Ed.McGraw-Hill, São Paulo, 1996
- Van Wylen, G.J., "Fundamentos da Termodinâmica Clássica, Ed.McGraw-Hill, São Paulo, 1996
- EES, Enginnering Equation Solver, 1999.
- ASHRAE Handbook, Fundamentals Volume, "American Society of Heating, Refrigerating and Air Conditioning Engineers, Atlanta GA., 1991.
- Stoecker, W.F., "Design of Thermal Systems", 2nd ed., McGraw-Hill, NY, 1989.
- Sontag, R., Borgnakke, C. e Van Wylen, G., "Fundamental of Thermodynamics", 5ft ed., John Wiley & Sons, NY, 1999.