
 

22nd International Congress of Mechanical Engineering (COBEM 2013) 
November 3-7, 2013, Ribeirão Preto, SP, Brazil 

Copyright © 2013 by ABCM 

 
NONLINEAR ATTITUDE CONTROL OF ARTIFICIAL SATELLITES  

CONSIDERING FAILURE IN MOMENTUM WHEELS 

 
Carlos Augusto de Carvalho Junior 
Universidade Federal do ABC / Aerospace Engineering  
Av. dos Estados, 5001 - Bangu - Santo André  
carlos.carvalho@ufabc.edu.br 
 

Andre Fenili 
Universidade Federal do ABC / Aerospace Engineering  
Av. dos Estados, 5001 - Bangu - Santo André  
andre.fenili@ufabc.edu.br 
 

Abstract. This paper develops theoretical and numerical analysis regarding a problem that occurs in artificial 

satellites: mechanical failure in the momentum wheels. The artificial satellite to be investigated consists of a rigid body 

freely to move around the three axes. In each one of these directions a momentum wheel is placed in order to control 

the attitude angle around that axes. A linear control law or a nonlinear control law can be applied on each one of the 

momentum wheels. The linear control technique studied here is the Linear Quadratic Regulator (LQR) and the non-

linear technique is the State Dependent Riccati Equation (SDRE). The mathematical model with the different control 

laws is numerically integrated using the fourth order Runge-Kutta. The cases tested in this paper take into 

consideration failures in one or in two of the three momentum wheels and the ability of each one of the proposed 

controllers to satisfactorily control the satellite under these conditions. 
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1. INTRODUCTION  

                 

A meteorological satellite must be appointed to some region of the planet Earth in order to acquisite images which 
are subsequently used for weather forecasting. This acquisition must be precise and stable to disturbances to ensure 
useful images. The pointing of the acquisition camera and the robustness of this appointment are provided by means of 
actuation devices called momentum wheels (or reaction wheels, in some cases).  

Reaction/momentum wheels are flywheels used to provide attitude control authority and stability on spacecraft. By 
adding or removing energy from the flywheel, torque is applied to a single axis of the spacecraft, causing it to react by 
rotating. By maintaining flywheel rotation, called momentum, a single axis of the spacecraft is stabilized. Several 
reaction/momentum wheels can be used to provide full three-axis attitude control and stability 

In general, each one of the principal axes of the satellite is controlled by one momentum wheel. In some cases, a 
fourth momentum wheel is positioned strategically for the situation in which one of those three presents some failure. 
The additional wheel must surpass the deficiency and ensure the continued operation of the satellite (Agrawal, 1986; 
Fenili e Kuga, 2008). 

Three momentum wheels are considered here. Each one of these wheels is aligned with a principal axes of the 
satellite. Two cases are considered in this paper: (1) each one of the momentum wheels is controlled by a linear control 
law named LQR (Dorato et al., 1995) and (2) each one of the momentum wheels is controlled by a nonlinear control 
law named SDRE (Çimen, 2008). These two cases are compared when one or two of the wheels just stop working 
during an operation.  

 
2. THE GOVERNING EQUATIONS OF MOTION  

 

The angular momentum of a rigid body with respect to its center of mass is given by: 
 




JH  (1) 
 
with H being the body´s angular momentum, J being the inertia tensor and   being the angular velocity of the body 

relative to the inertial frame.  
The rate of change of H


 equals the total external torque acting on the body. In the special case when the body axes 

x, y and z are the principal axes of inertia, let xI , yI and zI be the principal moments of inertia.  
In this situation, the governing equations of motion given by Eq. (1) can be expanded as: 
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Equations (2) are called the Euler's equations of motion.  

The shape of the satellite considered in this paper sis a cube. For the cube one has IIII zyx  . Using this 
simplification in Eq. (2) and considering only one external torque acting in each direction, the following set of 
governing equations is obtained: 
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The relationship between the angular velocity   in each direction and the Euler´s angles used in this work is given 

by: 
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Using this relationship in Eq. (3) results: 
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Decoupling the second derivatives, it is possible to write the governing equations of motion for the problem 

investigated here as: 
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3. LINEAR AND NONLINEAR CONTROL 

 

3.1 The Linear Quadratic Regulator (LQR) 

 

The LQR-strategy is based on defining a cost function which shall be minimized. By doing this one can obtain a 
gain matrix of optimal gains to be used for feedback. In this paper, one considers a quadratic cost function given by: 

 






0

TT dtRu)uQxL(xJ                                                                                                                                             (6) 
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And the steady-state LQR problem. The optimum linear control law that minimizes the quadratic cost function J 

assumed here is given, according to (Dorato et al., 1995), by: 
 

KxBRU T1                                                                                                                                                          (7) 
 
In Eq. (7), K is a symmetric positive definite matrix that satisfies the matrix Algebraic Ricatti Equation given by:   

      

01   KBKBRQKAKA TT

                                                                                                                               (8) 
 
Equation (8), Q and R are positive definite weighting matrices.   
The linear system matrices A and B used for the determination of the optimal gains is obtained by neglecting all the 

nonlinear terms. 
 

3.2 The State-dependent Riccati equation (SDRE) 

 

The state-dependent Riccati equation (SDRE) approach to nonlinear system control relies on representing a 
nonlinear system’s dynamics with state-dependent coefficient matrices that can be inserted into state-dependent Riccati 
equations to generate a feedback law (Shamma and Cloutier, 2003). The main idea of this method is to represent the 
nonlinear system: 

 
B(x)uf(x)x                                                                                                                                                 (9) 

 
In the form: 

 
B(x)u xA(x)x                                                                                                                                        (10) 

 
The feedback law is given by (Shamma and Cloutier, 2003): 
 

 xP(x) (x)B (x)Ru T1                                                                                                                                  (11) 
 
Where P(x) is obtained from the SDRE: 

 
0(x)P(x)(x)BP(x)B(x)RQ(x)(x)P(x)AP(x)A(x) T-1T                                                                      (12) 

 
In Eq. 12, Q(x) and R(x) are design parameters that satisfy the positive definiteness condition Q(x) > 0 and R(x) > 0. 
 

3.3 Linearization technique 

 
For nonlinear systems sometimes it is important to verify the dynamics near the equilibrium points. An analysis that 

can be conducted is the linearization around this point. The stability of the original system around this point is related to 
the behaviour of the linear system that approximates it around this point. Let an autonomous system ne given by: 
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With the equilibrium point (x0,y0). The linearization is obtained near this point using an expansion in Taylor series 

given by:  
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The resulting linear system has coefficient matrix 
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4. LINEARIZATION OF THE GOVERNING EQUATIOINS OF MOTION 

 

To apply the LQR one needs first to linearize the governing equations of motion, since the LQR works with linear 
systems. The states considered here are: 
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The linearization of Eq. (5) using the linearization technique discussed in Sub-Chapter 3.3 is realized in the 

neighbourhood of the states: 
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The linearized governing equations of motion are then given by: 
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5. STATE DEPENDENT MATRICES FOR THE SDRE 

 
The implementation of the SDRE uses the original governing equations of motion given by Eq. (5) but in the state 

space form. These equations when written in the form given by Eq. (10) have the A and B matrices as state dependent 
quantities given by:  
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And: 

 

   

    I/10)xsin(I/)xcos()xcos(0)xsin(I/)xcos()xsin(0
000000
00)xsin(I/)xcos(0)xsin(I/)xsin(0
000000
00I/)xsin(0I/)xcos(0
000000

x)(B

115115

1515

55





                                                (18) 

 

Matrix A can be written in several ways. The form presented in Eq. (17) is just one of them. In this sense, one deals 
here with a sub-optimal problem.  

 
6. NUMERICAL SIMULATIONS 

 
The parameters and initial conditions used in the numerical simulations are presented in Tab. 1 and 2. 
 

Table 1. Parameters used in the numerical simulations 
 

Parameter Value 

acceleration of gravity 9.81m/s2 
total time 200 s 

integration step 10-2 
total mass fo the satellite 200 Kg 

dimension of the cube (satellite) 0.6m 
 

Table 2. Initial conditions for the angular positions and angular velocities 
 

Initial conditions Value 

θ(0) 0.8 rad 
ϕ(0) 0.7 rad 
Ѱ(0) 0.6 rad 

(0)  0.04 rad/s 

(0)  0.04 rad/s 
(0)  0.04 rad/s 

 
The weighting matrices Q and R considered in the numerical simulations are: 
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6.1 Failure of the momentum wheel considering the LQR 

 
The failure of the momentum wheel is considered in the numerical simulations by imposing that the torques Mx, My 

or Mz are zero after some integration time. It means that the specific wheel is not actuating anymore. Only LQR control 
is considered here. 

First one considers that Mx (the torque associated to the angle θ) fails. It occurs after 15 seconds of operation. The 
results are presented in Fig. 1 and 2.     
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Figure 1. Attitude angles θ, Ѱ and ϕ with failure in Mx after 15s: LQR control. 
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Figure 2. Angular velocity dθ/dt, dѰ/dt and dϕ/dt with the failure in Mx after 15s: LQR control. 
 

It is observed that with the failure of the torque Mx the velocity   do not converges to zero. It causes instability in 
this angle and in the angle ϕ. The torques My and Mz brings the angles ϕ and Ѱ to zero.           

One considers now that My (the torque associated to the angle ϕ) fails. The results are presented in Fig. 3 and 4. 
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Figure 3. Attitude angles θ, Ѱ and ϕ with failure in My after 15s: LQR control. 
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Figure 4. Angular velocity dθ/dt, dѰ/dt and dϕ/dt with the failure in My after 15s: LQR control. 
  

Even with the failure in My it can be noted that the system is stable in the other two directions during the period of 
the simulation. This occurs because the coupling between θ, Ѱ and ϕ. The dynamics and control in the angles θ and Ѱ 
are able to compensate the failure in the momentum wheel acting on ϕ.                  

One considers now that Mz (the torque associated to the angle Ѱ) fails. The results are presented in Fig. 5 and 6. 
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Figure 5. Attitude angles θ, Ѱ and ϕ with failure in Mz after 15s: LQR control. 
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Figure 6. Angular velocity dθ/dt, dѰ/dt and dϕ/dt with the failure in Mz after 15s: LQR control. 
 

The behaviour in this case is similar to the one when My fails. Even with the failure in Mz the system is stable in the 
other two directions. The dynamics and control in the angles θ and ϕ are able to compensate the failure in the 
momentum wheel acting on Ѱ. 

It is assumed now that the failure occurs in Mx and in My at the same time. The results are presented in Fig. 7 and 8. 
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Figure 7. Attitude angles θ, Ѱ and ϕ with failure in Mx and My after 15s: LQR control. 
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Figure 8. Angular velocity dθ/dt, dѰ/dt and dϕ/dt with the failure in Mx and My after 15s: LQR control. 
 

With the simultaneous failure in the momentum wheel in the x and y directions the instability occurs in all the 
attitude angles. It happens because the only controlled angle, Ѱ, cannot exert sufficient influence on the other two 
angles in order to stabilize their positions.       

It is assumed now that the failure occurs in Mx and in Mz at the same time. The results are presented in Fig. 9 and 
10. 
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Figure 9. Attitude angles θ, Ѱ and ϕ with failure in Mx and Mz after 15s: LQR control. 
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Figure 10. Angular velocity dθ/dt, dѰ/dt and dϕ/dt with the failure in Mx and Mz after 15s: LQR control. 
 

Considering the simultaneous failure in the momentum wheels in the x and z directions the instability occurs in all 
the attitude angles. The coupling with the angle ϕ is not sufficient to compensate the failure in the momentum wheels 
related to angles θ and Ѱ. 

It is assumed now that the failure occurs in My and Mz at the same time. The results are presented in Fig. 11 and 12. 
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Figure 11. Attitude angles θ, Ѱ and ϕ with failure in My and Mz after 15s: LQR control. 
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Figure 12. Angular velocity dθ/dt, dѰ/dt and dϕ/dt with the failure in My and Mz after 15s: LQR control. 
 

With only the torque Mx actuating it is possible to control all the attitude angles. This is possible because of the 
dynamic coupling between all these angles. The momentum wheel on the x direction has influence on the angles in all 
the three directions.  Differently from the other cases, it happens because of the relationship between the angular 
velocity   in each direction and the Euler´s angles considered here.  

 
6.2 Failure of the momentum wheel considering the SDRE                                    

 
The failures on the momentum wheels are considered now using the SDRE as the control technique. The same 

conditions imposed before for the LQR control are considered here. The initial conditions are considered such that the 
nonlinear terms in the governing equation of motion are sufficiently excited. 

The first case considers failure in Mx after 15 seconds of operation. The results are presented in Fig. 13 and 14. 
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Figure 13. Attitude angles θ, Ѱ and ϕ with failure in Mx after 15s: SDRE control. 
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Figure 14. Angular velocity dθ/dt, dѰ/dt and dϕ/dt with the failure in Mx after 15s: SDRE control. 
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The failure in the momentum wheel aligned with the x-axes makes the system unstable. The values of the angles and 

velocities are around the desired values but not converges t it.   
Considering that My fails, the results are presented in Fig. 15 and 16. 
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Figure 15. Attitude angles θ, Ѱ and ϕ with failure in My after 15s: SDRE control 
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Figure 16. Angular velocity dθ/dt, dѰ/dt and dϕ/dt with the failure in My after 15s: SDRE control 
 

As presented in Fig. 15 and 16, even with the failure in the momentum wheel aligned with the y-axis the system 
stabilizes in the desired positions. It is observed again the influence of the angular coupling between the attitude angles.   

One considers now that Mz fails. The results are presented in Fig. 17 and 18. 
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Figure 17. Attitude angles θ, Ѱ and ϕ with failure in Mz after 15s: SDRE control 
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Figure 18. Angular velocity dθ/dt, dѰ/dt and dϕ/dt with the failure in Mz after 15s: SDRE control 
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As presented in Fig. 17 and 18, with the failure in the momentum wheel aligned with the z-axes the system is 

stabilized in all the desired angular positions. Similar with the previous simulation, the angular coupling that θ and ϕ 
exert in Ѱ is able to compensate the failure in the momentum wheel related to Ѱ. Comparing the LQR results presented 
in Fig. 5 and 6 with similar results using SDRE presented in Fig. 17 and 18 the nonlinear control shows the best results. 

With the failure occurring in Mx and in My at the same time, the results are presented in Fig. 19 and 20. 
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Figure 19. Attitude angles θ, Ѱ and ϕ with failure in Mx and My after 15s: SDRE control. 
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Figure 20. Angular velocity dθ/dt, dѰ/dt and dϕ/dt with the failure in Mx and My after 15s: SDRE control. 
 

Considering the simultaneous failure in the momentum wheels in the x and y directions the instability occurs in all 
the attitude angles. This happens because Ѱ cannot exert sufficient influence on the other two angles where the wheels 
failed in order to stabilize their positions.                 

Now it is assumed that the failure occurs in the x and z directions. The results are presented in Fig. 21 and 22. 
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Figure 21. Attitude angles θ, Ѱ and ϕ with failure in Mx and Mz after 15s: SDRE control. 
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Figure 22. Angular velocity dθ/dt, dѰ/dt and dϕ/dt with the failure in Mx and Mz after 15s: SDRE control. 
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Considering now the simultaneous failure in the momentum wheels in the x and z directions the instability also 

occurs in all the attitude angles. Similar to the previous results, ϕ is not able to provide sufficient influence in order to 
the system to be stable, since the angle of higher influence, θ, has failed. Comparing the LQR results in Fig. 9 and 10 
for failure in Mx and Mz with the results for the SDRE presented in Fig. 21 and 22, one can see that the SDRE results 
are better. 

It is assumed now failure in My and in Mz at the same time. The results are presented in Fig. 23 and 24. 
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Figure 23. Attitude angles θ, Ѱ and ϕ with failure in My and Mz after 15s: SDRE control 
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Figure 24. Angular velocity dθ/dt, dѰ/dt and dϕ/dt with the failure in My and Mz after 15s: SDRE control 
 

Considering only the torque Mx actuating it is possible to control all the attitude angles as occurs when applying the 
LQR control. This is possible because the stronger dynamic coupling between all the attitude angles. The momentum 
wheel on the x direction has strong influence on the angles in all the three directions.  
 
7. CONCLUSION  

 
The governing equations of motion for the satellite are a nonlinear set. Because of its nonlinear nature, the variables 

are coupled and a change in any of them (θ, ϕ or ψ and its derivatives) involves a change in the other two variables. This 
coupling also occurs with the torque controls. The actuator considered here are the momentum wheels. 

In this paper is considered failures in the momentum wheel in several situations. In some cases only one actuator 
fails and in some cases two actuators fails. 

It is possible to conclude that the system can only be satisfactorily controlled if the momentum wheel in the x 
direction of the x (related to the angle θ) does not fail, regardless what happens with the other two momentum wheels. 
This fact can be explained by the coupling between the variables of the problem and also by the transformation of the 
Euler angles chosen in the mathematical model of the system. 

In many situations it is clear that the nonlinear control SDRE presents better results when compared with the linear 
control LQR.  
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