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Abstract. In this work, the classical Galerkin finite element method with the Characteristic-based Split scheme is 
applied for numerical simulation of incompressible flow through a simplified model of a heart valve. The 
Characteristic-based Split scheme is a technique for stabilization of the Galerkin finite element method in order to 
eliminate oscillations when this method is applied to solve convective dominant problems. Numerical simulations of 
unsteady flows have been carried out on unstructured meshes of triangular finite elements. The results of some test 
cases show that the classical Galerkin finite element method with the Characteristic-based Split scheme predicts the 
expected behavior of the flow. 
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1. INTRODUCTION  
 

The Galerkin finite element method combined with the Characteristic-based Split scheme is a stabilized method and 
doesn´t present spurious oscillations when applied for solution of convective dominant flows. The classical Galerkin 
finite element method in its original formulation may produce solutions without physical significance for flows with 
high Reynolds numbers. 

The Characteristic-based Split scheme for both incompressible and compressible flows was first presented by 
Zienkiewicz and Codina (1995) and has been extended to investigate other applications: solid dynamics, shallow water 
flows, thermal and porous medium flows, for example. Several other authors have presented contributions and 
improved the method. The Characteristic-based Split scheme has been combined with the standard Artificial 
Compressibility method to obtain an efficient and accurate explicit matrix free procedure, Liu (2005). In this work a 
semi-implicit Characteristic-based Split scheme, in which a matrix solution procedure is required for the implicit 
solution of a pressure Poisson equation, has been applied for computational solution of the Navier-Stokes equations in 
two-dimensional domains, Octaviani (2013). 

The Characteristic-based Split scheme based on in a first step by removing all pressure gradient terms from the 
Navier-Stokes equations leads to a non-singular solution for any shape functions used for velocity and pressure. The 
velocities obtained in this first step don´t satisfy the mass conservation. In a second step, the pressure is obtained from 
the continuity equation and finally in a third step the intermediate velocities obtained from the first step are corrected to 
get the final velocity values that now satisfy the continuity equation. In previous works, Pereira (2010), Octaviani, 
Pereira and Campos-Silva (2011) presented applications for simulations of flows with heat transfer in tube bundles. In 
this work, simulations of isothermal flows in a model of heart valve are presented. The expected behavior of the flows 
was well predicted using the Galerkin finite element method together the Characteristic-based Split scheme.  
 
2. THE GOVERNING EQAUTIONS AND THE CHARACTERISTIC BS SCHEME 
 

In this section the governing equations for incompressible viscous flows are presented in dimensionless form 
considering a length L, a velocity 0u  and a time 0/L u  as reference parameters. The original equations are the 
continuity and the momentum equations. Also, the main aspects of the Characteristic-based Split scheme are described 
for completeness.  

 
2.1 Governing equations 
 

The governing equations are presented in a non-dimensional form as shown in Octaviani (2013) and this form is: 
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where /i iX x L= ; 0/i iU u u= ; 2

0 0/P p uρ= ; 2
0 0/ji ji uτ τ ρ=  and all physical properties in Eqs. (1) – (2) are non-

dimensionalized in relation to reference properties at 0T . *
0/ρ ρ ρ= ; *

0/μ μ μ=  are the density and the dynamic 
viscosity. The Reynolds number is defined as 0 0 0/Re = u Lρ μ . An asterisk indicates dimensional values. iS  is a source 
term. 
 
2.2 The Characteristic-based Split scheme 
 

Details of the derivation of the Characteristic-based Split scheme, for the Navier-Stokes equations, can be found in 
Lewis, Nithiarasu and Seetharamu (2004) and it’s an extension of the Characteristic Galerkin method of Zienkiewicz 
and Taylor (2000). It’s based on evaluation of the time derivative along the characteristic. This procedure eliminates the 
convective term in a transport equation in a first moment but introduce an inconvenience of a non-inertial system of 
reference. So, a pure diffusion equation is obtained and after an expansion in Taylor series of the terms of that equation 
prevents the needing to follow the flow and introduces new terms that work as stabilizing in the numerical solution. 
Details can be found in Pereira (2010) and also in Octaviani (2013). The basic equation after a time discretization of a 
transport equation is of the form 
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(3) 

 
Note that the convection terms reappear in the time discretized equation and also higher order terms appeared in the 

Eq. (3). These high order terms work as stabilizing of the solution. 
 

2.3 Time discretization of the Navier-Stokes equations  
 
The time discretization of the continuity and the momentum equations is done in three steps. In the first step the 

pressure terms are dropped from the momentum equations and an intermediate velocity that doesn´t satisfy the 
continuity is obtained as 
 

Step 1: Intermediate velocity 
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(4) 

 
In the second step, a Poisson equation is solved for the pressure field considering the continuity equation. This 

Poisson equation is of the form 
Step 2: Pressure calculation 
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In the third step the final velocity is obtained by correcting the intermediate velocity 
Step 3: Corrected velocity 
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(6) 

If a transport equation has to be solved for any additional scalar variable it’s similar to Eq. (3) 
 

2.4 Spatial discretization and matrix form  
 

Now the standard Galerkin approximation with the divergence theorem is applied to the time discretized Eqs. (4) to 
(6). In the Galerkin finite element method the following set of interpolations are used for the variables: 

 

i u iU N U= % ; pP N P= % ;
 

(7) 
 

where 1 2 Tk l
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% L L

 
are the nodal variables and 1 2 k lN N N N N⎡ ⎤= ⎣ ⎦L L  are 

the interpolation functions. The integration of the equations and the use of the divergence theorem result in the weak 
formulation: 
 

Step 1: Weak form of intermediate momentum 
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Step 2: Weak form of pressure equation (semi-implicit Characteristic-based Split scheme) 
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Step 3: Weak form of momentum correction 
 

* 1
T

T T n Tu
u i u i u p

i

NN U d N U d t P d t N t d
x

+

Ω Ω Ω Γ

∂
Δ Ω = Δ Ω+ Δ Ω−Δ Γ

∂∫ ∫ ∫ ∫
 

(10) 

 
The final matrix form of the weak formulation (8)-(10) is 
Step 1: Intermediate momentum 
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Step 2: Pressure 
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Step 3: Momentum correction 
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In the Equations (11) – (13) the matrices and vectors are defined as 
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Where B is a matrix defined by 

 

uSNB =  (17) 
 

and S is a differential operator that for two-dimensional problems has the form: 
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And the vectors m and oI  are 
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In the literature it has been proved that with the use of Characteristic-based Split scheme, the interpolations 

functions don’t require the Ladyzhenskaya-Babuska-Brezzi (LBB) condition be satisfied. Velocity and pressure fields 
can be interpolated by functions of the same order without any spurious oscillation in the pressure field. For the semi-
implicit scheme used in this work, the mass matrices in Eqs. (11) and (13) are the lumped matrices. 
 
3. RESULTS AND DISCUSSIONS 
 

The application considered in this work is the flow in a channel with a constriction followed by an obstruction as 
illustrated in Figure 1. This configuration is supposed to represent a heart valve in position totally open that is the most 
critical case for the flow, i.e., the maximum mass flow rate. The channel has a dimensionless length 6.5 in the main 
flow direction and dimensionless height 2 in the transverse direction. This geometry was presented by Mueller (1978) 
for a finite difference solution to the problem with vorticity and stream function as dependent variables. 
 

 
 

Figure 1. Flow in a channel with an obstruction (model a simplified heart valve). 
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The obstruction has a height of 1.4 and its left face is at position X=2. Its width is 0.2. The reentrances in the 
channel are at position X=1.4 and they have width 0.4 a height 0.4. Only half of the channel is considered for spatial 
discretization as shown in Figure 2. There are 2792 nodes and 4673 elements in the mesh.  
 

 
 

Figure 2. Mesh of three node triangular elements in half of the channel. 
 

The equations of the flow were solved for several numbers of Reynolds. The imposed boundary conditions were 
uniform velocity at the inlet section, no slip at the walls, symmetry at the central line of the channel and null pressure 
field at outlet section. Totally explicit schemes were used for the intermediate and corrected velocities. The only 
algebraic system solved was that one for the pressure field in step 2. As the linear system resulting in step 2 is 
symmetrical and positive defined, the preconditioned conjugate gradient method is employed for solution of that 
system. This procedure is named semi-implicit scheme. Other schemes such as matrix free have also been employed in 
the literature, Liu (2005). In the solution the velocity and pressure fields are obtained. As a post processing we obtain 
the stream functions that are shown in the figures that follow.  

The Characteristic-based Split scheme has also been validated and verified in previous works by several authors, 
mainly of Swansea University. In context of our research group, see the works of Pereira (2010), Octaviani, Pereira and 
Campos-Silva (2011) and Octaviani (2013) for other applications.  

Obviously, the geometry considered in this work is very simple compared with the geometry of the real flow. In real 
flow the walls are non rigid, the flow is oscillatory and pulsatile. However, the problem considered here, is a 
preliminary introduction for considering most realistic cases in future works. 

 

(a) t = 1 (b) t = 4 

(c) t = 8 (d) t = 14 

(e) t = 22 (f) t = 32 

 
Figure 3. Stream functions for Re = 20 at some instants of time. 

 
In Figure 3 it´s showed the stream functions from a simulation for a low Reynolds numbers equal to 20. In lower 

times the flow doesn´t recirculate behind the obstacle. The recirculation appears in dimensionless time next to 20. At 
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time, t=22, we can see a recirculation behind the obstacle and after time t=32, the recirculation seems to be already 
established indicating a possible steady state. In next figures are shown results for other Reynolds numbers. In Figure 4, 
the Reynolds numbers is equal to 40. We can notice a very small vortex at time, t=8. The vortex grows up and at time 
32, similar the case of Fig. 3, the flow seems also be in steady state. 
 

 (a) t = 1 (b) t = 4 

(c) t = 8 (d) t = 14 

(e) t = 22 (f) t = 32 

 
Figure 4. Stream functions for Re = 40 at some instants of time. 

 

In next figures, Fig. 5 to 8, the simulation were for Reynolds numbers, Re=60, 80, 200 and 800 respectively. We can 
notice that the first visible vortex, in all cases simulated, appears about time, t=8. Until the Reynolds numbers of 800, 
the length of the recirculation zone is approximate the same in all cases. No significant change occurs in that length. 
 

 (a) t = 1 (b) t = 4 

  

(c) t = 8 (d) t = 14 

(e) t = 22 (f) t = 32 

  
 

Figure 5. Stream functions for Re = 60 at some instants of time. 
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(a) t = 1 (b) t = 4 

(c) t = 8 (d) t = 14 

(e) t = 22 (f) t = 32 

 
Figure 6. Stream functions for Re = 80 at some instants of time. 

 
 (a) t = 1 (b) t = 4 

(c) t = 8 (d) t = 14 

(e) t = 22 (f) t = 32 

 
 

Figure 7. Stream functions for Re = 200 at some instants of time. 
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(a) t = 1 (b) t = 4 

(c) t = 8 (d) t = 14 

(e) t = 22 (f) t = 32 

 
Figure 8. Stream functions for Re = 800 at some instants of time. 

 
In Figure 9 we present results for simulations considering the Reynolds number of 1,500, 2,500 and 10,000. In the 

case of Re = 1,500, the plotted results are for t = 32. In the case of Re = 2,500 and 10,000 the results are for the instant 
of time, t = 22. For these more high numbers of Reynolds we can notice a small vortex in the corner before lower 
obstacle. 

 
(a) Re = 1,500; t = 32 

 
 

(b) Re = 2,500; t = 22 

 
(c) Re = 10,000; t = 22 

 
 

Figure 9. Stream functions for more higher Reynolds numbers. 
 

A zoom of the region next the restriction and obstacle is shown in Figure 10, for Re = 1,500. In that figure we can 
see the small vortex  
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Figure 10. An ampliation of the flow around the restriction and obstacle; Re =1500, t = 22. 
 

Mueller (1978) presented results for other configurations: axisymmetric flows with model disc valve, aortic-shaped 
channel with model disc valve and planar flows similar the case considered in this work. In future works we intend to 
aboard those cases of axisymmetric and other flows. In the present work, the application was utilized for learning and 
test of the stabilized Galerkin finite element method with the Characteristic-based Split scheme. Although, we don´t 
show the results from Mueler (1978), the qualitatively expected behavior of the flow was predicted with the present 
method. 
 
4. CONCLUSIONS 

An application of the Galerkin finite element method with the Characteristic-based Split scheme was realized in this 
work. Until the Reynolds numbers considered no spurious oscillations appeared in the results. Higher Reynolds 
numbers and more complex cases have to be considered. In literature several cases of flows including turbulent and 3D 
flows have already been simulated by the Galerkin finite element method and the use of Characteristic-based Split 
scheme as stabilization technique. 

The obtained results encourage the sequence of studies on the numerical method applied in the present work. 
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