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Abstract. Numerical results from the Direct Numerical Simulation (DNS) code are compared in a boundary layer over
an airfoil with experimental and Linear Stability Theory (LST) results. Characteristics from the boundary layer, as
displacement thickness, momentum thickness and shape factor, are taken into consideration. Comparisons considering
the amplitude of the velocity disturbance caused by two-dimensional Tollmien-Schlichting waves are also made. The
results shows that the DNS code is verified and validated.
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1. INTRODUCTION

The no-slip condition on a solid body reduces the velocities in the outer flow to zero on the surface. This reduction
generates large velocity gradients in a thin layer adjacent to the surface of the body. This layer is the boundary layer, in
which strong viscous effects exist (Currie, 2003).

The boundary layer is directly affected by the outer flow (Reed et al., 1996; White, 2006). The presence of a favorable
pressure gradient causes the outer flow to accelerate and stabilizes the boundary layer flow. On the other hand, the presence
of an adverse pressure gradient decelerates the outer flow and increases the instability of the boundary layer.

An increasing instability leads to transition to turbulence and predicting the location of the transition point is still a
challenge. Experimental and numerical studies are being used to explain and predict this phenomenon.

In this paper, the results carried out by a Direct Numerical Simulation (DNS) code are compared to experimental and
Linear Stability Theory (LST) ones in order to verify and validate the code. The experimental results were obtained at
the wind tunnel of the Institute of Aerodynamics and Gas Dynamics of the University of Stuttgart. The formation of
the boundary layer is validated by means of comparisons involving the following parameters: streamwise velocity at the
boundary layer edge, displacement thickness, momentum thickness and shape factor are presented.

Small disturbances produces Tollmien-Schlichting (TS) waves in the flow. The growth or decay of this waves indicates
if the flow is stable or unstable. According to linear stability theory, when the amplitudes of this waves are small, they
can grow until certain point (neutral curve) and starts to decay. Based on this, TS waves were introduced on the flow, in
order to study the disturbance caused by them in the velocity profile. The amplitude of the disturbance in the streamwise
direction was also compared between experimental, LST and numerical results with the aim of verifying and validating
the DNS code.

2. FORMULATION

In this section the governing equations and the numerical methodology implemented are presented. The governing
equations are based on Navier-Stokes equations, written in the vorticity-velocity formulation. The discretization is carried
out by means of high-order finite-differences schemes and spectral approximations for the spatial derivatives and a fourth
order Runge-Kutta scheme for the temporal discretization.

2.1 Governing equations

The governing equations are the incompressible equations with constant viscosity, based on Navier-Stokes equations
written in orthogonal coordinates. Defining the vorticity as the negative curl of the velocity vector, and using the fact that
both the velocity and the vorticity fields are solenoidal, one can obtain the following vorticity transport equation in each
direction:

∂ωx
∂t

+
∂a

∂y
− ∂b

∂z
= ∇2ωx, (1)

∂ωy
∂t

+
∂c

∂z
− ∂a

∂x
= ∇2ωy, (2)
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∂ωz
∂t

+
∂b

∂x
− ∂c

∂y
= ∇2ωz, (3)

where

a = ωxv − ωyu, (4)

b = ωzu− ωxw, (5)

c = ωyw − ωzv, (6)

are the nonlinear terms resulting from convection, vortex stretching and vortex bending. The variables u, v, w, ωx, ωy , ωz
are the velocity and vorticity components in the streamwise (x), wall-normal (y) and spanwise (z) directions respectively;
t is the time. The Laplace operator is:

∇2 =
1

Re

(
∂2

∂x2
+

∂2

∂z2

)
+

∂2

∂y2
. (7)

The continuity equation is given by:

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0. (8)

The above equations are presented in a non-dimensional form. The reference length is a plate-characteristic length L̃
and the reference velocity is the free stream velocity Ũ∞. The Reynolds number is given by

Re =
Ũ∞L̃

ν̃
, (9)

where ν̃ is the kinematic viscosity.
The variables are non-dimensionalized according to:

x =
x∗

L
; y =

y∗
√
Re

L
; z =

z∗

L
; u =

u∗

U∞
; v =

v∗
√
Re

U∞
; w =

w∗

U∞
; (10)

ωx =
ω∗xL

U∞
√
Re

; ωy =
ω∗yL

U∞
; ωz =

ω∗zL

U∞
√
Re

; t =
t∗U∞
L

. (11)

Taking the definition of the vorticity and the mass conservation equation, one can obtain Poisson-type equations for
each velocity component:

∂2u

∂x2
+
∂2u

∂z2
= −∂ωy

∂z
− ∂2v

∂x∂y
, (12)

1

Re

(
∂2v

∂x2
+
∂2v

∂z2

)
+
∂2v

∂y2
= −∂ωz

∂x
+
∂ωx
∂z

, (13)

∂2w

∂x2
+
∂2w

∂z2
=
∂ωy
∂x
− ∂2v

∂y∂z
. (14)

3. NUMERICAL METHOD

The equations presented above are discretized by high-order finite differences schemes and spectral approximations
for the spatial derivatives. A fourth-order four-step Runge-Kutta method is used for the temporal discretization.

3.1 Discretization of field equations

The flow is assumed to be periodic in the spanwise direction. Therefore, the flow field can be expanded in Fourier
series with K spanwise Fourier modes:

f(x, y, z, t) =
K∑
k=0

Fk(x, y, t)e(iβkz) (15)
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where

f = u, v, w, ωx, ωy, ωz, a, b, c, (16)

Fk = Uk, Vk,Wk,Ωxk ,Ωyk ,Ωzk , Ak, Bk, Ck, (17)

and βk is the spanwise wavenumber given by

βk =
2πk

λz
, (18)

and λz is the spanwise wavelength of the fundamental spanwise Fourier mode, and i =
√
−1. Note that Fk may be

fully complex, i.e., non-symmetric three-dimensional disturbance fields can be computed. The nonlinear terms are com-
puted pseudospectrally, i.e. by transformation of all flow variables to physical space, computing the nonlinear terms at
consecutive spanwise stations, and transforming the products back to Fourier space.

Substituting the Fourier transforms (Eq. (15)) in the vorticity transport equations (Eq. (1) – Eq. (3)) and in the velocity
Poisson equations (Eq. (12) – Eq. (14)) yield the governing equations in the Fourier space, for each Fourier mode:

∂Ωxk
∂t

+
∂Ak
∂y
− βkBk = ∇2

kΩxk , (19)

∂Ωyk
∂t

+ βkCk −
∂Ak
∂x

= ∇2
kΩyk , (20)

∂Ωzk
∂t

+
∂Bk
∂x

+
∂Ck
∂y

= ∇2
kΩzk , (21)

∂2Uk
∂x2

− β2
kUk = −βkΩyk −

∂2Vk
∂x∂y

, (22)

1

Re

(
∂2Vk
∂x2

− β2
kVk

)
+
∂2Vk
∂y2

= −∂Ωzk
∂x

+ βkΩxk , (23)

∂2Wk

∂x2
− β2

kWk =
∂Ωyk
∂x

+ βk
∂Vk
∂y

, (24)

where

∇2
k =

1

Re

(
∂2

∂x2
− β2

k

)
+

∂2

∂y2
. (25)

The equations (Eq. (19) – Eq. (24)) are solved numerically in the domain shown schematically in Fig. 1. The
calculations are done on an orthogonal uniform grid, parallel to the wall. The fluid enters the computational domain at
x = x0 and exits at the outflow boundary x = xmax. Disturbances are introduced into the flow field using spanwise
suction and blowing in a disturbance strip at the wall. This strip is located between x1 and x2. In the region located
between x3 and x4 a buffer domain technique, from Kloker and Konzelmann (1993), is implemented in order to avoid
wave reflections at the outflow boundary. In these simulations a Falkner-Skan boundary layer is used as the base flow.

The time derivatives in the vorticity transport equations are discretized with a classical fourth-order Runge-Kutta
integration scheme (Ferziger and Peric, 1997). The spatial derivatives are calculated using a high-order compact finite
difference schemes (Souza et al., 2005; Souza, 2003; Kloker, 1998; Lele, 1992). The V -Poisson equation (Eq. (23)) is
solved using a multigrid Full Approximation Scheme (FAS) (Stüben and Trottenberg, 1981). A V-cycle with 4 grids is
implemented. The code is parallelized, using domain decomposition in the streamwise direction.

3.2 Boundary conditions

At the wall (y = 0), a no-slip condition is imposed for the streamwise (Uk) and the spanwise (Wk) velocity compo-
nents. The wall-normal velocity component at the wall (Vk) is specified at the suction and blowing strip regions, where
the disturbances are introduced. Away from the disturbance generator this velocity component is set to zero. The function
used for the wall-normal velocity at the disturbance generator strip is:

Vk(x, 0, t) = Akfp(x) sin(ωtkt+ θk) for x1 ≤ x ≤ x2, (26)

where Ak and θk are real constants chosen to adjust the amplitude and phase of the disturbance and ωtk is the dimension-
less frequency. The function fp(x) adopted is a ninth-order function. This function is used in order to make sure that, at
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Figure 1. Computational domain.

y = 0, the vertical velocity component, its first and second derivatives do not have a discontinuity going in and out of the
suction and blowing region.

At the inflow boundary (x = x0), the velocity and vorticity components are specified based on the Falkner-Skan
boundary layer solution. At the outflow boundary (x = xmax), the second derivatives with respect to the streamwise
direction of the velocity and vorticity components are set to zero. At the upper boundary (y = ymax) the flow is considered
non rotational. This is satisfied by setting all vorticity components and their derivatives to zero. The wall-normal velocity
component at the upper boundary is settled according to the condition:

∂Vk
∂y
|x,ymax,t = − α∗√

Re
Vk(x, ymax, t), (27)

where α∗ =
√
α2 + k2β2.

In addition, at the wall (y = 0), the condition

∂Vk
∂y

= 0 (28)

is imposed in the solution of the Poisson equation (Eq. (22)), to ensure mass conservation. The equations used for
evaluating the vorticity components at the wall are:

∂2Ωxk
∂x2

− β2
kΩxk = −∂

2Ωyk
∂x∂y

− βk∇2
kVk, (29)

∂Ωzk
∂x

= βkΩxk −∇2
kVk. (30)

A damping zone near the outflow boundary is defined in which all the disturbances are gradually damped down to
zero (Kloker and Konzelmann, 1993). This technique is used to avoid reflections in the outflow boundary. The basic idea
is to multiply the vorticity components by a ramp function f1(x) after each sub-step of the integration method. Using this
technique, the vorticity components are taken as:

Ωk(x, y, t) = f1(x)Ω∗k(x, y, t), (31)

where Ω∗k(x, y, t) is the disturbance vorticity component that results from the Runge-Kutta integration and f1(x) is a ramp
function that goes from 1 to 0. The implemented function is:

f1(x) = f1(ε) = (1− ε50)4e−
ε3

10 , (32)

where

ε =
x− x3
x4 − x3

(33)

for x3 ≤ x ≤ x4. To ensure good numerical results and efficiency a minimum distance between x3 and x4 and between
x4 and the end of the domain xmax had to be studied. In the present study, 100 points between x3 and x4 and 40 points
between x4 and xmax were considered.
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Another buffer domain, located near the inflow boundary is also implemented in the code. As pointed out by Meitz
(1996), in simulations involving streamwise vortices, reflections due to the vortices at the inflow can contaminate the
numerical solution. The damping function is similar to the one used for the outflow boundary:

f2(x) = f2(ε) = 6ε5 − 15ε4 + 10ε3 (34)

where

ε =
x− x0
x1 − x0

(35)

for the range x0 ≤ x ≤ x1. All vorticity components are multiplied by this function in this region.

4. RESULTS

In this section, the validation of the DNS code is shown, by means of comparisons between experimental and numerical
results. In Sec. 4.1 boundary layer characteristics are compared and in Sec. 4.2 the variation of the amplitude of the
streamwise velocity disturbance, caused by Tollmien-Schlichting (TS) waves in the boundary layer, are presented.

The experimental results were performed in the laminar wind tunnel of the Institute of Aerodynamics and Gas Dynam-
ics (IAG) of the University of Stuttgart (Plogmann et al., 2012). The numerical results were obtained during an exchange
period at the University of Stuttgart.

4.1 Boundary layer parameters

The formation of the boundary layer is analyzed in this section comparing some boundary layer characteristics. The
characteristics considered here are the following: streamwise component of velocity at the boundary layer edge, displace-
ment thickness, momentum thickness and shape factor.

The numerical results consists of two items. The first one is a similarity solution of the Falkner-Skan equation. For this
solution, the streamwise velocity component at the boundary layer edge given by the experiments was taken as boundary
condition at the upper boundary. This Falkner-Skan solution was considered as initial condition for the second numerical
result: a two-dimensional DNS simulation.

In the 2D-DNS code the following parameters were considered: length scale L̃ = 0.18m, kinematic viscosity ν̃ =
1.56 × 10−5m2/s, domain size 1177 × 177 points in streamwise and wall-normal directions, respectively, grid space
dx = 3.125 × 10−3 and dy0 = 1.8 × 10−4 in streamwise and wall-normal directions, respectively, with stretching of
mesh in wall-normal direction of 1%.

For these comparisons three cases were considered: a flow with pressure gradient close to zero, a decelerated flow and
an accelerated flow. This cases were obtained varying the airfoil angle of attack in the experiments.

The velocity scale for non-dimensionalization at each case was: Ũ∞,x0 = 29.4985m/s for the flow with pressure
gradient close to zero, Ũ∞,x0

= 31.1288m/s for the decelerated flow and Ũ∞,x0
= 27.935m/s for the accelerated flow,

where Ũ∞,x0
= Ũ∞|x0

, i. e., Ũ∞ at the initial point of the domain.
First of all, the streamwise velocity component u in streamwise direction x at the edge of the boundary layer was

compared. This result is shown in Fig. 2, for the three pressure distributions considered. u values are non-dimensionalized
by Ũ∞,x0 , for each flow type, and x values are non-dimensionalized by L̃.

It is possible to see that all numerical results are close to the experimental ones. Moreover, the velocity behavior shows
the variation in the velocity due to the pressure distribution for each case.

For the other characteristics, four results are presented: experimental, theoretical boundary layer profile, Falkner-Skan
similarity solution and 2D-DNS. The theoretical boundary layer profile uses the finite difference scheme given by Cebeci
and Smith (1974). For the flow with pressure gradient close to zero there are two experimental results.

The second boundary layer characteristic compared is the displacement thickness, given by:

δ1 =

∫ ∞
y=0

(
1− u

Ũ∞

)
dy. (36)

The displacement thickness δ1 by the streamwise direction x is shown in Fig. 3. δ1 and x values are non-dimensionalized
by L̃.

The four results present a similar behavior for all cases. One can notice that the experimental value tend to be smaller
than the numerical ones, when moving away from the leading edge. This phenomenon was observed in other works,
however, its causes are still not known.

The next characteristic taken into account is the momentum thickness, obtained by:

δ2 =
u

Ũ∞

∫ ∞
y=0

(
1− u

Ũ∞

)
dy. (37)
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∂p

∂x
< 0

∂p

∂x
≈ 0

∂p

∂x
> 0

Figure 2. Streamwise velocity u in streamwise direction x at the boundary layer edge for all cases. Exp: experimental,
FS: Falkner-Skan solution, DNS: 2D-DNS result.

a) b)

c)

Figure 3. Displacement thickness δ1 in streamwise direction x, a) flow with pressure gradient close to zero, b) decelerated
flow, c) accelerated flow. Exp: experimental, theo: theoretical boundary layer profile, FS: Falkner-Skan solution, DNS:

2D-DNS result.

The comparisons between the momentum thickness in streamwise direction for all cases are presented in Fig. 4. The
length scale L̃ is used to non-dimensionalize δ2 and x values.

ISSN 2176-5480

4115



22nd International Congress of Mechanical Engineering (COBEM 2013)
November 3-7, 2013, Ribeirão Preto, SP, Brazil

a) b)

c)

Figure 4. Momentum thickness δ2 in streamwise direction x, a) flow with pressure gradient close to zero, b) decelerated
flow, c) accelerated flow. Exp: experimental, theo: theoretical boundary layer profile, FS: Falkner-Skan solution, DNS:

2D-DNS result.

As for the displacement thickness, a similar behavior between experimental and numerical results can be noticed.
The last compared characteristic is the shape factor, which is the ratio between the displacement and momentum

thicknesses:

H12 =
δ1
δ2
. (38)

The streamwise variation of the shape factor for the cases considered is presented in Fig. 5. H12 and x values are
non-dimensionalized by L̃.

One can see that the 2D-DNS results are closer to the experimental and calculated results than the FS ones. This is
due to the simplifications done to obtain the Falkner-Skan equations. The 2D-DNS code removes the errors from this
simplifications and can better represent the flow being simulated.

This results show that the 2D-DNS code was capable to simulate the flow according to the experimental results. This
fact allowed the validation of this code.

4.2 Downstream development of modal amplitudes

After validating the code for the formation of the boundary layer, a linear stability test was made. For this test, a
2D-TS wave with small amplitude was introduced at the disturbance strip, located between x1 and x2 (see Fig. 1). This
TS wave produces a disturbance in the velocity field and the amplitude of this disturbance in the streamwise component
of the velocity was measured and compared. The amplitude of the TS waves is small enough to neglect the nonlinear
products.

The comparison presented in this section involves the experimental results, the results obtained with a Linear Stability
Theory (LST) code and the results of the three-dimensional DNS code.

The variation in the amplitude of the maximum value of the disturbance of the streamwise velocity component u over

ISSN 2176-5480

4116



L. A. Petri, L. F. Souza
Verification and Validation of a Direct Numerical Simulation Code for Transitional Boundary Layer

a) b)

c)

Figure 5. Shape factor H12 in streamwise direction x, a) flow with pressure gradient close to zero, b) decelerated flow, c)
accelerated flow. Exp: experimental, theo: theoretical boundary layer profile, FS: Falkner-Skan solution, DNS: 2D-DNS

result.

the wall-normal direction y, is defined as:

amp = max
y

(u′(1, 0)), (39)

where u′ is the disturbance of the velocity.
The parameters used for the 3D-DNS code are the same as those for the 2D-DNS code, with wavelength in spanwise

direction λz = 0.4m.
In these tests, two cases were considered: a flow with pressure gradient close to zero and a flow with adverse pressure

gradient.
The first comparison was made taking into account the flow with pressure gradient close to zero. For this case a

frequency of disturbance F = 549Hz is considered. Figure 6 shows the variation in the amplitude of the disturbance u′

in streamwise direction x.
It can be noticed that the 3D-DNS numerical results agree with both the experimental and the LST code results.
For the flow with adverse pressure gradient, three frequencies were considered: F = 396Hz, 549Hz and 701Hz.

Figure 7 shows the variation in the amplitude of the disturbance u′ in streamwise direction for these cases.
Again, the DNS-3D results are very similar to the experimental and the LST code results.

5. CONCLUSION

The result presented above show that experimental data and numerical solution are in good agreement in the formation
of the boundary layer. Experimental, LST and numerical results also agree in the disturbance of TS waves. Verification
and validation of the DNS code are presented with this results.

This code is going to be used to predict the transition point of a boundary layer flow in a surface containing a roughness.
Comparisons with experimental results will also be done.
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Figure 6. Amplitude of perturbation of the streamwise velocity component (amp - in log scale) in streamwise direction x
for the flow with pressure gradient close to zero, with frequency F = 549Hz.

Figure 7. Amplitude of perturbation of the streamwise velocity component (amp - in log scale) in streamwise direction x
for the flow with adverse pressure gradient, with frequencies F = 396Hz, 549Hz and 701Hz.
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