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Abstract. This work develops an algorithm that maximizes the likelihood of the sensor readings to correctly calibrate

the gain matrix and bias of a magnetometer and an accelerometer. Most calibration algorithms rely on statistical ap-

proximations of the sensor noise, which may lead to inaccurate results. With the assumption of Gaussian noise with full

covariance matrix, our algorithm uses a set of standing still sensors readings to iteratively optimize the sensors parame-

ters, field intensity and current rotation. The results show that the reconstruction error median is less than 0.1 standard

deviations from the correct value for reasonable number of samples and with almost constant time.
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1. INTRODUCTION

The sensors reading represents a fundamental step in the control loop of a robot, but this reading may provide values

different from the correct ones due to sensors miscalibration. In the aerial vehicles setting, it’s common to use accelerom-

eters and magnetometers to estimate the system’s attitude (Lizarraga et al., 2013). Due to their similarities, most focus

has been given to the magnetometer calibration, which has been extensively researched. While there are calibration algo-

rithms using filters (Sabatini, 2006) or recursion (Pylvanainen, 2008), we’ll focus here on two well established algorithms

that resemble our own.

Alonso and Shuster (2002) developed an extension to the TWOSTEP algorithm that calibrates a magnetometer by

maximizing the likelihood of a set of readings adjusting the bias and gain matrix estimates. This algorithm relies on

minimizing the difference between the norm of each sensor reading with the known magnetic field’s norm during each

reading. Being independent of the current system’s attitude, the readings may be captured during flight without prejudicing

to the results. Crassidis et al. (2005) developed an extension to the algorithm that can be performed online.

Vasconcelos et al. (2008) proved that noiseless magnetometer readings fit perfectly to an ellipsis and, based on this

result, developed a calibration algorithm for the sensor. Similarly to the previous one, this algorithm doesn’t depend on the

current system’s attitude and may be used while the system is moving. However, the covariance model is more restrictive,

allowing it to be only a product between a constant and the identity matrix.

Both algorithms correctly estimate the bias and gain matrix for the magnetometer and may be used for the accelerom-

eter. However, as the calibrations must be performed independently, each sensor will be calibrated in its own sensor

frame. Moreover, as the current attitude is unknown, the algorithms aren’t able to estimate the direction of the magnetic

field, which may be unknown and is essential to correctly estimate the attitude using a magnetometer (Sabatini, 2006;

Gebre-Egziabher et al., 2000; Madgwick et al., 2011).

By creating sets of samples with the same attitude and assuming that the gravitational and the magnetic fields aren’t

collinear, we’ve developed an algorithm that simultaneously calibrates an accelerometer and a magnetometer without

making any approximations. It’s important to note that the attitudes’ restriction only means that the algorithm may not

be used when the system is operating in a non-stationary regime. The algorithm also computes the attitude at each set

of readings and estimates the magnetic field’s direction. To the best of our knowledge, this is the most complete and

statistically correct calibration algorithm for an accelerometer and a magnetometer.

The paper is organized as follows. In Sections 2 and 3 we describe the sensor model used in this paper and how

the gathered data is preprocessed, respectively. Using the sensor model, we develop a cost function and describe its

optimization in Section 4. We describe the complete algorithm in Section 5, and we present the experimental study

performed in this paper and its analysis in Section 6. Finally, we provide concluding remarks and future research directions

in Section 7.

2. SENSOR MODEL

In this paper, we’ll consider a linear sensor model affected by a Gaussian noise, as it’s a common assumption (Alonso

and Shuster, 2002; Vasconcelos et al., 2008). Let ss(t) be the sensor s reading at time t and sRs (t) the true value measured
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by the sensor, such as gravity. Then their relationship may be expressed as

ss(t) = Kss
R
s (t) + bs + ǫs, ǫs ∼ N (0,Σs) (1)

where Ks, bs and Σs are the sensor’s gain matrix, bias and covariance matrix, respectively. We’ll consider here that the

sensor index s can be a for the accelerometer or m for the magnetometer, but they may assume different values if more

sensors are calibrated simultaneously.

Assuming there’s no disturbance in the sensors other than the Gaussian noise, a correct reading sRs (t) is given by a

rotation of the nominal field for each sensor from the inertial frame I, where the fields are defined, to the sensor frame S,

where the calibration occurs. As the inertial frame I in which these fields are defined is arbitrary, we’ll consider the one

where the gravitational field g and the magnetic field h can be written as

g =
[

0 0 gz
]⊤

, h =
[

hx 0 hz

]⊤
, gz < 0, hx > 0 (2)

where gz , hx and hz are the fields’ components and we assume that g and h aren’t collinear, that is, the magnetic field

has a component in the x direction. If they are collinear, then the magnetometer doesn’t provide enough new information

for the calibration and doesn’t allow a unique definition of I.

Once the fields are defined, we may write the correct reading as sRs (t) = R(t)sIs , where R(t) is the current rotation

between the inertial frame I and the sensor frame S, and sIs is the reference field for the sensor s expressed in I, i.e., g

and h for an accelerometer and a magnetometer, respectively.

With the sensor model given in Eq. (1), the probability of a certain reading ss given the sensor’s parameters is defined

as

p(ss;Σs,Ks,bs,R, sIs ) = (2π)−
3
2 |Σs|−

1
2 exp

(

−1

2

(

KsRsIs + bs − ss
)⊤

Σ−1
s

(

KsRsIs + bs − ss
)

)

, (3)

which will be used to estimate the sensor parameters.

3. DATA CAPTURE AND PREPROCESSING

For the data capture, consider that the sensors were held undisturbed for a total of N different orientations and, at each

orientation i ∈ {1, 2, . . . , N}, the sensor s captured ∆s[i] samples. Using the sensor model defined in Eq. (1), we have

µs[i] = KsRis
I
s + bs (4)

ss[i, j] ∼ N (µs[i],Σs), j ∈ {1, 2, . . . ,∆s[i]}

where ss[i, ·] are the samples collected at orientation i and µs[i] is the reference value for that orientation, which is

constant for all ∆s[i] samples collected.

As the amount of data collected this way may be huge and doesn’t provide much information, we’ll summarize them

for further processing. The uniformly minimum variance unbiased estimator (Krishnamoorthy, 2010) for the reference

value µs[i] is given by

µ̂s[i] =
1

∆s[i]

∆s[i]
∑

j=1

ss[i, j] (5)

and its value is a sample from a normal distribution with reduced covariance, so that

µ̂s[i] ∼ N
(

µs[i],
Σs

∆s[i]

)

(6)

Although we may iterate the estimation of Σs with the estimation of other sensor’s parameters, we’ve noticed that it

not only didn’t improve performance significantly but also decreased it substantially most of the time. We’ve thus decided

to use a single estimate during the whole process, which is given by

Σ̂s =

∑N

i=1

∑∆s[i]
j=1 (ss[i, j]− µ̂s[i]) (ss[i, j]− µ̂s[i])

⊤

(

∑N

i=1 ∆s[i]
)

−N
(7)

and is the uniformly minimum variance unbiased estimator for the covariance matrix Σs when we generalize Bessel’s

correction (Kenney and Keeping, 1957).

As we don’t have access to the correct matrix Σs, we’ll use the estimate given by Eq. (7) as the true value during the

other parameters’ estimation.
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4. COST FUNCTION OPTIMIZATION

Given a set of parameters

Θ = {Ka,ba,g,Km,bm,h,Ri}

and the data µ̂s[i] and Σ̂s computed by Eq. (5) and Eq. (7), respectively, considering the model given by Eq. (6), and

assuming that Σ̂s is the correct covariance, the parameters’ likelihood is given by

L(Θ; µ̂a, µ̂m, Σ̂a, Σ̂m) =

N
∏

i=1

∏

s∈{a,m}

p

(

µ̂s[i];
Σ̂s

∆s[i]
,Ks,bs,Ri, s

I
s

)

where p(·) is given by Eq. (3).

Using this likelihood, we define the cost function as J = − logL, and the calibration objective becomes minimizing

J , which is a method as maximum likelihood estimation. Ignoring the constants and irrelevant multiplicative terms, we

can write J as

J(Θ; µ̂a, µ̂m, Σ̂a, Σ̂m) =

N
∑

i=1

∑

s∈{a,m}

∆s[i]
(

KsRis
I
s + bs − µ̂s[i]

)⊤
Σ̂−1

s

(

KsRis
I
s + bs − µ̂s[i]

)

(8)

Note that the accelerometer and magnetometer calibrations are related only by the rotations Ri and each rotation

depends on a single set of measurements.

4.1 Rotation estimation

Consider that every parameter in Θ is known, except for the rotations Ri. The cost function, given by Eq. (8), may be

decomposed in N isolated equations, one for each rotation. These equations are given by

Ji(Ri) =
∑

s∈{a,m}

∆s[i]
(

KsRis
I
s + bs − µ̂s[j]

)⊤
Σ̂−1

s

(

KsRis
I
s + bs − µ̂s[j]

)

(9)

which are nonlinear in Ri and thus subject to local minima. As we currently lack a better proposal to solve this, we

express Ri in quaternion form (Chou, 1992) and optimize its values directly through gradient descent.

4.2 Bias and fields estimation

Consider now that only the biases ba and bm and the field parameters gz , hx and hz are unknown among the param-

eters in Θ. We’ll use the generalized least square method (Kariya and Kurata, 2004) to perform this optimization.

The generalized least squares (GLS) problem may be described as follows: given two sets of observations y and X

and a matrix Ω such that y may be written as

y = Xβ + ǫ, E[ǫ|X] = 0, Var[ǫ|X] = Ω, (10)

find the set of parameters β that best fits the observations. The best estimator for β is given by

β̂ =
(

X⊤Ω−1X
)−1

X⊤Ω−1y (11)

Using the models in Eq. (4) and Eq. (6), we see that each accelerometer summarized reading µ̂a[i] may be written as

µ̂a[i] = KaRi~zgz + ba + ǫa[i], ǫa[i] ∼ N
(

0,
Σ̂a

∆a[i]

)

(12)

where ~z is the unitary vector in the z direction.

Writing the set of equations given by Eq. (12) in the form used by the GLS problem in Eq. (10), we have

ya =











µ̂a[1]
µ̂a[2]

...

µ̂a[N ]











, Xa =











KaR1~z I3
KaR2~z I3

...
...

KaRN~z I3











, Ωa =















Σ̂a

∆a[1]
0 · · · 0

0 Σ̂a

∆a[2]
· · · 0

...
...

. . .
...

0 0 · · · Σ̂a

∆a[N ]















, βa =

[

gz
ba

]

(13)
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where I3 is a 3× 3 identity matrix and 0 is a null matrix of the appropriate size.

It’s important to highlight that the GLS problem as stated in Eq. (13) and Eq. (10) minimizes the cost function defined

in Eq. (8). To see that, we may re-write the GLS problem as trying to minimize a cost J ′ given by

J ′ = ‖Xaβa − ya‖2
Ω

−1
a

=

N
∑

i=1

‖KaRi~zgz + ba − µ̂a[i]‖2( Σ̂a

∆a[i]

)

−1

=

N
∑

i=1

‖KaRig + ba − µ̂a[i]‖2( Σ̂a

∆a[i]

)

−1

=

N
∑

i=1

∆a[i] (KaRig+ ba − µ̂a[i])
⊤
Σ̂−1

a (KaRig+ ba − µ̂a[i]) (14)

where ‖x‖M =
√
x⊤Mx is the weighted Euclidean vector norm. It’s straightforward to notice that Eq. (14) is the same

as Eq. (8) when we consider only s = a. Therefore the GLS solution for Eq. (13) minimizes the original cost function J .

For the magnetometer, we have a set of matrices given by

Xm =











KmR1~x KmR1~z I3
KmR2~x KmR2~z I3

...
...

...

KmRN~x KmRN~z I3











, βm =





hx

hz

bm



 (15)

where ~x is the unitary vector in the x direction and the matrices ym and Ωm are defined similarly to the accelerometer

matrices in Eq. (13).

By solving the GLS problems given by Eq. (13) and Eq. (15) using Eq. (11), we have the best estimates for the biases

and fields. However, the fields have restrictions on their values due to the definitions in Eq. (2). Through tests, we

found out that simply changing the signs after solving the GLSs when they’re incorrect worked better than performing a

constrained optimization. This occurs because the sign change may be caused by other reasons, such as wrong rotation or

gain estimate, and only occurs in the first few iterations, when the parameters are starting to fit into place.

4.3 Problem with parameter redundancy

When we are trying to estimate all parameters in Θ, we notice that two problems occur when trying to estimate the

gain matrices Ka and Km.

The first one is due to the fact that there are infinite values such that KaRig is constant for every Ri, as we can scale

Ka and g by inverse constants and keep the product the same. Therefore, we need to impose some restriction to allow

only one combination to be feasible or the algorithm may suffer from convergence issues. We’ve decided to fix gz = −1
so that it satisfies the restriction given by Eq. (2). To do this, we multiply the current estimation of Ka by |gz| and set

gz = −1 after solving the GLS problem given by the Eq. (13). Although we theoretically should multiply the estimate by

−gz , we noticed that just scaling the matrix was more robust and eased the optimization. Similarly, we set hx = 1 and

adjust Km and hz accordingly to keep the product constant.

The second problem occurs because, due to the polar decomposition theorem (Alonso and Shuster, 2002), we may

write Ka as Ka = PU where P is a symmetric semi-positive matrix and U is a unitary matrix. As any rotation Ri is

also a unitary matrix, the term URi in KaRi = PURi doesn’t allow us to distinguish between the rotation Ri and the

matrix U that makes Ka become asymmetric. Therefore, we have again an infinite set of possible values. To solve this,

we restrict U to be U = diag(±1,±1,±1), where diag(·) represents a diagonal matrix, thus making Ka symmetric.

We could be more restrictive in the definition of U, but that would make the optimization harder without providing

any benefit. If another format for U is desired, such as the identity, the polar decomposition may be performed in the final

gain matrix estimate. Also, this restriction may be applied to the magnetometer instead of the accelerometer, as it doesn’t

matter which sensor has its gain matrix restricted as long as only one has.

4.4 Gain matrices estimation

Considering now that only the gain matrices Ka and Km are unknown amongst the parameters in Θ, we may use GLS

to find the best values again. To do so, we need to define two sets of auxiliary variables:

[

gSi,1 gSi,2 gSi,3
]⊤

= Rig
(

hS
i

)⊤
= Rih
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and define Ks,ij to be the value in line i and column j of the matrix Ks.

With these definitions and considering that Ka is symmetric, we may write the problem’s matrices for the accelerom-

eter as

ya =











µ̂a[1]− ba

µ̂a[2]− ba

...

µ̂a[N ]− ba











, Xa =



































gS1,1 gS1,2 gS1,3 0 0 0
0 gS1,1 0 gS1,2 gS1,3 0
0 0 gS1,1 0 gS1,2 gS1,3

gS2,1 gS2,2 gS2,3 0 0 0
0 gS2,1 0 gS2,2 gS2,3 0
0 0 gS2,1 0 gS2,2 gS2,3
...

...
...

...
...

...

gSN,1 gSN,2 gSN,3 0 0 0

0 gSN,1 0 gSN,2 gSN,3 0

0 0 gSN,1 0 gSN,2 gSN,3



































, βa =

















Ka,11

Ka,12

Ka,13

Ka,22

Ka,23

Ka,33

















(16)

and Ωa is the same written in Eq. (13). For the magnetometer, we have

Xm =



































hS
1 0 0
0 hS

1 0
0 0 hS

1

hS
2 0 0
0 hS

2 0
0 0 hS

2
...

...
...

hS
N 0 0
0 hS

N 0
0 0 hS

N



































, βm =





























Km,11

Km,12

Km,13

Km,21

Km,22

Km,23

Km,31

Km,32

Km,33





























(17)

and ym and Ωm defined similarly to Eq. (16) and Eq. (13), respectively.

Equations (16) and (17) are solved using Eq. (11) to obtain the gain matrices’ best estimations.

5. CALIBRATION ALGORITHM

Using the estimators developed in the last section, we can now describe a greedy algorithm that always minimizes the

cost function given by Eq. (8). The algorithm is:

1. Pre-process the data using Eq. (5) and Eq. (7).

2. Create the first parameters’ estimates, set k = 1 and compute the cost J [0] using Eq. (8). The first estimates are

given by null biases, gain and rotation matrices as the identity, hx = 1, hz = 1 and gz = −1.

3. Optimize the rotations as described in Sec. 4.1.

4. Optimize the bias and fields as described in Seq. 4.2 and 4.3.

5. If there was little change in the fields, optimize the gains as described in Sec. 4.4. We added this condition because

we noticed that optimizing the gain matrices every iteration didn’t provide enough benefit for its cost. Therefore,

we only perform this optimization when the change in hz is less than 10−3 between two steps, which means that

the other estimates are stabilized.

6. Compute the J [k] using Eq. (8).

7. If J [k − 1]− J [k] > γ, go to step 3. Otherwise, end calibration.

As can be seen, every step in this algorithm is greedy, computing only the best solution at each iteration. As we’ll see,

this may lead to convergence problems when a step isn’t convex, which in our case is the attitude estimation.

6. EXPERIMENTS

6.1 Experimental setup

The experiment was run in a AMD Phenom II x4 955 with 6GB of RAM memory available. The algorithm was

implemented using SciPy (Jones et al., 2001–) and NumPy. However, due to implementation details, we were unable

ISSN 2176-5480

3920



C. S. Miranda and J. V. Ferreira
Greedy Statistically Correct Simultaneous Calibration Of Magnetometers And Accelerometers

to measure the processor time for each simulation, which would be a more precise time measurement. To avoid huge

differences in the wall time due to background programs, only 3 of the CPU’s cores where used and the program received

high priority.

6.2 Synthetic data

During our simulations, we considered a total of N = 15 sets of measurements for the accelerometer and magnetome-

ter, both having the same number ∆[i] ∼ U({400, 401, . . . , 600}) of collected samples at each rotation. The rotations

where randomly created using the algorithm described in (Kuffner, 2004), and the algorithm’s stop condition was set to

γ = 10−4.

When we vary the parameters N and γ to test the algorithm’s performance, we need to do so in a way that allows us

to correctly compare the results. For γ, we used the same set of samples for every value tested. For N , we made it so that

N = n + 1 contains all the samples of N = n plus a new random set of samples. We thus link the values generated in

a way that simulates how the data would be captured, that is, if someone wants to evaluate the algorithm, he will capture

the maximum number of sets and use subsets of the samples for smaller values of N . The calibrations for each value of

N are performed separately, simulating a user that collected data only once, to avoid convergence issues to propagate.

The fields where created from random numbers in the intervals [−1.5,−0.5], [0.5, 1.5] and [−1.5, 1.5] for gz , hx and

hz , respectively. It is important to note that these parameters won’t be estimated, as explained in Sec. 4.3, but the ratio

between hx and hz will be estimated.

The accelerometer and the magnetometer have their parameters created in the same way. Each value bs,i of the bias

bs has a random value between [−1, 1], the gain matrix is given by Ks = I3 + δKs where δKs,ij ∼ U([−0.1, 0.1]), and

the covariances are given by

Σs = αs

{

Σs,ij ∼ U([0.5, 2]), if i = j

Σs,ij ∼ U([−0.2, 0.2]), otherwise
(18)

where αs ∼ U([10−2, 10−4]).
We performed a Monte Carlo simulation with a total of 100 runs and new parameters for each run. Table 1 presents a

summary of the parameters used in the experiment.

Table 1: Experiment parameters

Parameter Description Value

N Number of measurements sets 15
∆[i] Number of samples for each set i U({400, 401, . . . , 600})
Ri Rotation associated with set i See (Kuffner, 2004)

γ Stop condition 10−4

gz Gravity’s z component U([−1.5,−0.5])
hx Magnetic field’s x component U([0.5, 1.5])
hz Magnetic field’s z component U([−1.5, 1.5])
bs,i Bias’ component for sensor s U([−1, 1])
Ks Gain matrix for sensor s I + δKs, δKs,ij ∼ U([−0.1, 0.1])
Σs Covariance matrix for sensor s See Eq. (18)

Total of Monte Carlo runs 100

6.3 Experimental results

After the calibration, we’ll use the estimated parameters and rotations to rebuild estimates µ̃s[i] for µs[i]. To compare

the values’ reconstructions quality, we’ll use the following measurement:

δs =

√

√

√

√

∑N

i=1 ∆[i] (µs[i]− µ̃s[i])
⊤
Σ−1

s (µs[i]− µ̃s[i])
∑N

i=1 ∆[i]
(19)

which is derived from the Mahalanobis distance (Mahalanobis, 1936).

As can be seen from Fig. 1, there’s little difference in performance for γ ≤ 10−2 and both the accelerometer and

magnetometer reach similar error levels. The magnetometer errors are in general a little higher than the accelerometer’s,

but that seems to occur only because the magnetic field has more values to be estimated, leaving more room for error.

It’s worth noting that the change from γ = 10 to γ = 1 reduces significantly the reconstruction error due to more gain
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Figure 1: Reconstruction error varying the stop condition.

matrices estimations. With γ = 10, many runs stopped before the change in hz was small enough to trigger a gain matrix

estimation, as described in the algorithm’s step 5. While performing making this step do improve performance, after a

few estimations it doesn’t change enough to lower the error levels significantly.
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Figure 2: Reconstruction error varying the number of samples sets.

From Fig. 2, we note again that the error levels for the accelerometer and magnetometer are close, and that the number

of samples doesn’t affect the error levels significantly in most cases. However, sometimes the rotation estimation provides

poor results, reaching low quality local minima. As the gradient descent is incapable of avoiding these minima and the

algorithm is greedy, i.e., it only uses the best current estimates, all other parameters may be incorrectly estimated due

to that step’s non-convexity. It’s curious to note that this problem presented itself when more samples where collected

despite not occurring with fewer samples. We usually consider that more samples allow better estimations, but that isn’t

the case even when the data collected perfectly fits the model, as it’s artificially created. Our suggestion is to perform

the calibration with different subsets of the collected data and discard the outliers, which probably are caused by poor

minima.

The computing time for the calibration process is shown in Fig. 3. We note in Fig. 3a that the time is almost constant

for γ ≤ 10−5, which indicates that the cost function is close to a minimum and only little changes in the parameters are

performed. However, as previously noted, the reconstruction error doesn’t change significantly for γ ≤ 10−2, leading us

to believe that only fine tunning is performed after that point and that they may be unnecessary. A more surprising result

is observed when we vary the number of intervals.

Fig. 3b shows that the computing time is almost constant for all values of N . There are 2 main reasons why the time

should be higher. First, each optimization step is more expensive as additional rotations need to be estimated and the

GLS’s matrices become bigger with higher number of samples. Second, the cost is a direct sum of terms that increase

linearly with N , so the difference between the cost of two sequential iterations J [k − 1] and J [k] also increases linearly

with N , which should mean that more iterations are needed to reach a difference of γ.

Despite these two reasonable observations, the computing time is about the same and even has a minimum around

ISSN 2176-5480

3922



C. S. Miranda and J. V. Ferreira
Greedy Statistically Correct Simultaneous Calibration Of Magnetometers And Accelerometers

0.5

1

1.5

2

1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10

log10 γ

T
im

e
(l
o
g
1
0

[s
])

(a) Varying stop condition

1

1.2

1.4

1.6

1.8

2

2.2

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

N

T
im

e
(l
o
g
1
0

[s
])

(b) Varying number of samples sets

Figure 3: Calibration time.

N = 14. Although it’s true that each step has higher computational cost and the cost function is higher for higher values

of N if we fix the parameters, the additional data allows for faster convergence of the parameters’ estimates, thus requiring

significantly fewer steps to reach the stop condition.

7. CONCLUSION

In this paper, we presented a calibration process that uses maximum likelihood estimation to estimate gain and co-

variance matrices and bias for a magnetometer and an accelerometer, while also estimating the rotation of each set of

measurements and the magnetic field direction. To the best of the authors’ knowledge, this is the only algorithm that uses

complete statistical model and estimates the magnetic field direction.

The proposed greedy algorithm has only one non-convex step, while the convex steps make use of the generalized

least squares problem, allowing them to use the full covariance matrix. The calibration is performed in an arbitrary sensor

frame, like all work in this area we know, thus needing to be integrated with an algorithm to calibrate this frame.

Using artificial data, we showed that the reconstruction error median is lower than 0.1 for all cases with reasonable

stop conditions, with the error being measured by a generalization of the Mahalanobis distance given by Eq. (19). We also

showed that the algorithm has almost constant computing time for a reasonable number of samples sets. Increasing number

of samples doesn’t improve the estimates significantly, leading to a trade-off between time spent collecting samples and

calibration quality.

The rotation estimation step has the higher cost amongst all steps and is also the cause of poor parameter estimates

in some cases. To solve the first issue, we envision using an approximation for the cost function described in Eq. (9)

which allows faster solution computation, be it through a closed solution or better optimization behaviour. The second

issue may be solved using a non-greedy algorithm, which may have higher cost but escapes poor local minima, or by an

approximation that leads the rotation to a region near a good minima, allowing direct optimization to work well. We are

currently working on a single approximation to solve both these problems.

Another intended future work is to analyze the prediction error on samples not used on training. Although it’s not

a common practice in this field, checking an algorithm’s performance on a test set is common among machine learning

researchers due to the possibility of overfitting. Therefore, we would like to know how well the estimates are able to fit

unseen data. We haven’t done this yet because we need to fit only the rotation for these new samples, but the non-convexity

of our algorithm leads to poor local minima.
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