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Abstract. In this paper, it is presented a project of a fuzzy controller and a neural estimator to control a coordinate 

table powered by three-phase induction motor, aiming to implement an intelligent milling system. The position/speed 

control is performed using vector techniques of three-phase induction machines. The estimation of the motor 

electromagnetic torque is used for setting the feedrate of the table. The speed control is developed using Takagi-

Sugeno fuzzy logic model and electromagnetic torque estimation using neural network type LMS algorithm. The 

induction motor is powered by a frequency inverter driven by a Digital Signal Processor (DSP). Control strategies are 

implemented in DSP. Simulation results are presented for evaluating the performance of the system. 

 

Keywords: machining, speed control, torque estimation, fuzzy logic, neural network. 

 
1. INTRODUCTION 
 

Milling is a machining process in which the piece material removal takes place intermittently. The milling is 

accomplished by the combination of two movements performed simultaneously. One of the movements is rotation of 

the cutter around its axis. The other is the movement of the milling machine table, which is attached to the piece to be 

milled. Thus, cutting parameters such as feedrate, cutting speed and cutting depth should be analyzed (Alves, 2002). 

According to Mao-Yue et al. (2009), parameters of the machining process should be monitored and adjusted 

automatically, which can improve the production quality and reduce the machining time. 

With advancements in applications using induction motors, the use of these motors on start and controlling of 

positioning systems are majority in the industry. An example of positioner machine is the coordinate table, which has 

applicability to devices milling, turning, drilling, and welding, among others. The milling operation is one of the most 

important in the process of mechanical machining. 

The three-phase induction motor is widely used in various applications in industry, due to its relative simplicity of 

construction, maintenance, both operational and market low cost, as well as, the capacity to operate with a wide range 

of loads in adverse conditions. One of the factors that provided the advancement in driving of three-phase induction 

motor was the development of control strategies, specifically vector control strategies. 

In induction machine, the implementation of vector control for field orientation can be done by direct or indirect 

method. The direct field orientation enables the position of the flux is determined by measuring terminal quantities of 

the stator (voltages and currents). The advantage of using the stator terminal quantities lies in the fact to be sensitive 

only to the stator resistance (Altuna, 1997). 

In the development of controllers and estimators, and the use of vector control, the application of intelligent control 

techniques, such as fuzzy logic and artificial neural network (ANN), provided greater robustness to systems powered by 

three-phase induction motors. 

Fuzzy logic is a technique that allows the implementation of human experience in systems, considering the 

uncertainty of information, the ambiguities, for the development of controllers. The fuzzy inference model type Takagi-

Sugeno (TS) is capable of representing, approximately or exactly, any nonlinear dynamics as combination of locally 

valid linear models, interpolating smoothly (Mozelli, 2008). The TS fuzzy model is a hybrid approach (Takagi and 

Sugeno, 1985), because it combines a fuzzy method based on rules and a mathematical method, consisting of 
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conditional propositions, whose antecedents are linguistic variables and whose consequents are linear equations (Shaw 

and Simões, 2004). 

The ANN is a computational technique organized according on human neural structures and acquires knowledge 

from experience, consisting of inherently parallel and adaptive processing (Nigrini, 1993). This technology has the 

proper way to store knowledges and to evaluate them for use (Rumelhart and Mcclelland, 1986). This knowledge is 

acquired through a learning process and stored in a distributed manner. The learning objective is to obtain an implicit 

model of the system under study by adjusting the parameters of the neural network (Leite, 2003). 

In machining systems, a structure consisting of artificial neural network and data set was applied in the work by Lin 

et al. (2006), in order to obtain the inference of knowledge of a fuzzy model for an end milling process. The inference, 

based on fuzzy learning, was used as a mechanism of intelligent determination of advancement. 

The signal digital processor is a device that performs signal acquisition, performs large number of mathematical 

operations with fast and efficient processing in the range of microseconds, enabling the application in high performance 

systems operating in real time (Severino, 2005). This equipment is well suited for the implementation of control and 

estimation strategies, which have complex calculations to be performed in real time. 

This paper presents simulated results for the development of a driving and control system of a vertical milling 

machine. This system drives the coordinate table of the milling machine with specific feedrate for machining of 

material of a piece. 

As the coordinate table is driven by three-phase induction motor, the angular position control and the rotor rotational 

speed control of this motor are carried out. This speed of the three-phase induction motor is controlled using Takagi-

Sugeno fuzzy control system. 

The electromagnetic torque of the motor is estimated in order to identify the material of the machined piece and to 

define the feedrate of the table. For this estimation, it is used an artificial neural network type LMS (Least Mean 

Square) algorithm. 

 

2. SYSTEM DEVELOPMENT 
 

For the experimental setup of the milling machine, design shown in Fig. 1, it will be used a X-Y coordinate table 

composed by two perpendicular bases to each other, X and Y, which move linearly in the horizontal plane. The X base 

of the table (upper base) has a course of 200 mm and the Y base (lower base) of 100 mm, whose trapezoidal spindles 

have a pitch of 4 mm for ten revolutions of the motor shaft. Each base of the table is driven by a three-phase induction 

motor. The drive of the X base results in displacements in the right and left directions, and the Y base results in forward 

and backward displacements. 

A tool of end mill will be attached on the mandrel, located in the spindle of the milling machine. The cutter, running 

through a cutting depth in the Z axis, will perform chip removal of a piece fixed to the X base. 

 

 
 

Figure 1. Vertical milling machine design. 

 

Due to the work of piece machining, an electromagnetic torque will be imposed on the induction motor of the X 

base. The information of the electromagnetic torque estimated will characterize the type of material constituent of the 

piece. This signal of the estimated torque will be used to specify, in real time, the drive speed of the X base. 
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In Figure 2, the system configuration for the drive and control of the X base of the coordinate table is schematized. 

In this diagram, it can be observed not only the control system, developed to drive and control the three-phase induction 

motor of the X base, but also the estimation system of the electromagnetic torque of this motor. 

A DSP is used for processing, transmission and data acquisition. Hardware consists of a three-phase voltage inverter 

will power the three-phase induction motor of the table. An encoder is coupled to the motor shaft in order to obtain the 

angular position of the rotor of this machine and thus the linear position of the X base. And sensors are used to obtain 

the phase currents and phase voltages of the motor. 

 

 
 

Figure 2. Schematic diagram for the control of the coordinate table. 

 

2.1 Control system 
 

The control system of the three-phase induction motor was implemented in closed loop, where it was developed: a 

current controller using a proportional-integral controller (PI), and a speed controller through fuzzy model TS. 

The speed controller is composed: of a fuzzy PD base, TS model, with an input of Error and another Derror; and the 

integration of the Error. In Figure 3, it is presented the structure of the PD+I speed fuzzy controller used, in which its is 

the output variable of the fuzzy PD base, kp is the gain and      is the control variable. The variable      corresponds to the 

stator current of the three-phase induction motor, q component in referential of the rotor flux. 

 

 
 

Figure 3. PD+I speed fuzzy controller. 

 

Next, the settings for fuzzification, fuzzy inference and defuzzification of the developed fuzzy PD base are 

presented. 

In the fuzzification stage, Error and Derror input variables are defined, respectively, by the difference between the 

reference value and the value of the rotor rotational speed ωr, and by the derivative of this error. The universes of 

discourse of the Error and Derror comprise a normalized range from -1 to 1. 

The variable Error is composed of seven pertinence functions, with triangular and trapezoidal shapes, called: NB 

(Negative Big), NM (Negative Medium), NS (Negative Small), AZ (Almost Zero), PS (Positive Small), PM (Positive 

Medium) and PB (Positive Big).  In Figure 4, it is presented the arrangement of linguistic terms of the Error in their 

universe of discourse. 

For variable Derror, it was associated seven pertinence functions, with triangular and trapezoidal shapes, defined by 

the terms: NB, NM, NS, AZ, PS, PM and PB. In Figure 5, these functions are shown. 

In the stage of fuzzy inference, it is determined how the control rules are activated. In Table 1, the forty-nine control 

rules developed are inserted. 

Control rules consist of conditional sentences. For the composition of each rule and for the relationship between 

them, the max-min inference technique was used. Thus, each sentence is modeled by the min application and the 

relationships between rules are modeled by the max application. 

*b

sqi
*b

sqi
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Figure 4. Pertinence functions of the Error input variable. 

 

 
 

Figure 5. Pertinence functions of the Derror input variable. 

 
Table 1. Table of fuzzy rules of the speed controller. 

 

 Derror 

 Error       
NB NM NS AZ PS PM PB 

NB iNB iNB iNB iNB iPM iPB iPB 

NM iNB iNB iNB iNM iPS iAZ iPB 

NS iNB iNB iNM iNS iAZ iPS iPM 

AZ iPB iPM iPS iAZ iNS iNM iNB 

PS iNM iNS iAZ iPS iPM iPB iPB 

PM iNB iAZ iNS iPM iPB iPB iPB 

PB iNB iNB iNM iPB iPB iPB iPB 

 

In the defuzzification, the its output variable is generated, according to the PD fuzzy output shown in Fig. 3. 

According to Takagi-Sugeno fuzzy method, at this stage, a linear and time-invariant model is determined (Milhor, 

2008). 

In Equation (1), its variable is obtained by a weighted average, in which the itsx, itsy and itsz terms are expressed by Eq. 

(2), Eq. (3) and Eq. (4), respectively. This equation consists of linear functions, defined from the consequents of control 

rules and the numerical values of the Error and Derror input variables. 

 

iPSiPMiPBiAZiNSiNMiNB

iii
i

tsztsytsx

ts
++++++

++
=             (1) 

 

)5,090()3,070()1,030( DerrorErroriNSDerrorErroriNMDerrorErroriNBitsx ⋅−⋅+⋅−⋅+⋅−⋅=      (2) 

 

)0,10,1( DerrorErroriAZitsy ⋅−⋅=                (3) 
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)5,090()3,070()1,030( DerrorErroriPSDerrorErroriPMDerrorErroriPBitsz ⋅−⋅+⋅−⋅+⋅−⋅=      (4) 

 

The project of the current controller was developed from the complex model of representation of a three-phase 

induction machine, using the control quadrature with referential in rotor flux (b). 

Through the realization of mathematical simplifications, it was obtained the transfer function used in the project of 

current controller, as Eq. (5), where    and     correspond to the stator current and stator voltage of the three-phase 

induction motor in the referential of the rotor flux, respectively. Equations (6) and (7) are constituted by the parameters 

of the three-phase induction motor, in which    is the cyclic stator inductance,    is the cyclic rotor inductance,     is the 

cyclic mutual inductance,     is the stator resistance and     is the rotor time constant.  
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For the development of the current controller was used a PI classical controller, whose gains    and    were 

determined by Eq. (8) and (9), respectively. In Equation (8),      is the time constant of the source. 
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2.2 Estimation system 
 

From the complex model of representation of three-phase induction machine developed the estimation project of the 

electromagnetic torque of the three-phase induction motor, using control quadrature with fixed reference in the stator 

(a) and applying a ANN type LMS algorithm. 

An equation widely used to estimate the electromagnetic torque is Eq. (10), which is written in terms of the 

components of the stator flux and stator current. Thus, for the estimation of electromagnetic torque, firstly, stator flux of 

the three-phase induction motor was estimated. 
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sq iiPce λλ −=                   (10) 

 

In applying the voltage model of the machine, in the direct field orientation with reference by stator flux, the 

estimate stator flux      is obtained by integrating the counter-electromotive force. Equations (11) and (12) correspond to 

the stator flux in the d and q components, respectively. The stator voltage     and stator current     variables were 

obtained from the motor terminals. The stator resistance Rs is considered constant and equal to 5.1 Ω. 
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The integration procedure of counter-electromotive force originates levels of continuous current, called offset, in the 

estimation of the stator flux, implying, therefore, on an estimation of electromagnetic torque with not tolerable errors. 

For eliminating the offset on the flux signal, a neural adaptive filter was developed by the LMS algorithm technique. 

A neural structure was implemented for each flux component, d and q, similarly. 

In Figure 6, this structure is presented for the d component, consisting of only one neuron and a bias, as synaptic 

weight, with constant input equal to 1. The neural structure has, as input, the signal from  the estimated  stator  flux 

and the filtrated estimated stator flux        is obtained in the output. The filtering process is performed by subtracting “y” 

of the input signal       . 
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The algorithm developed for representation of the neural structure is described in Eq. (13) and Eq. (14), where y(n) 

is the filter output at the current instant and y(n+1) is the filter output at the next instant. Through this algorithm, an 

adaptive iteration was effected to each acquisition of the input data. 

 

)(nya

sd

a

sdf −= λλ                 (13) 

 
a

sdfnyny µλ2)()1( +=+                (14) 

 

 
 

Figure 6. Neural structure with LMS adaptive filter. 

 

The learning rate µ, used in Eq. (14), was calculated by the Eq. (15), so that µ is obtained in function of speed ωr 

because specific learning rates, due to variation of speed ωr, were required. 

 
4

r

7 102,4884375103,5625 −− ⋅+⋅⋅−= ωµ              (15) 

 

After the estimation of the stator flux and the elimination of the offset in the flux signal, the electromagnetic torque 

of the motor was estimated using Eq. (16). In this equation, the estimated electromagnetic torque ceest is determined 

using the filtered estimated stator flux,       and        the stator current,       and      , and the constant of the number of 

pairs of poles P of the three-phase induction motor, which is equal to two. 
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3. SIMULATION RESULTS 
 

In milling system, the objective is to drive the X base of the table for machining pieces constituted by different 

materials. To perform this study, in the simulation of the operation of the three-phase induction motor, the application 

of various loads to the motor was simulated and information of the torque signal ceest was used in the specification of 

the speed reference of rotation of the rotor       for the motor drive. 

The milling machine table performs a displacement of 4 mm for every ten revolutions of the motor shaft. Therefore, 

it was determined a numerical factor of the relationship between the magnitudes of linear displacement and linear speed 

of the table and the magnitudes of angular displacement and angular speed of the three-phase induction motor, that is 

0.064 mm/rad. 

In Table 2, the values, in module, are shown: the electromagnetic torques ce and their speed references     , and, 

through the ratio factor, the equivalent speed references of the X base v*. 

For analysis of the response curves, the induction motor is driven by references the type of step position, with 

amplitudes of 1562.5 rad and -1562.5 rad, resulting in rotation of the motor shaft in clockwise and anticlockwise 

directions. The aim is to analyze the displacement of the X base in right and left directions, along its 200 mm course. 

 

Table 2. Electromagnetic torques and reference speeds (values in module). 

 

ce (N.m) *

rω  (rad/s) v* (mm/s)  

1.0 31.0 1.984 

2.0 27.0 1.728 

3.0 23.0 1.472 

4.0 19.0 1.216 

5.0 15.0 0.96 
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The simulated three-phase induction motor has the following parameters: Rs = 5.1 Ω, Rr = 4.4578 Ω,                         

ls = lr = 0.334 H, lm = 0.3185 H, F = 0.0041 Nms, J = 0.041 kgm2. The simulation was performed in C language using 

the C++Builder® XE computer program and response curves were plotted using the Matlab
TM

 program. 

 

3.1 First simulation 
 

Initially, in Fig. 7, the response and reference curves of the variable angular position of the rotor are presented. In 

this first simulation, the induction motor was driven with a step type reference signal with amplitude of 1562.5 rad, 

applying a load of 1 N.m from starting of the machine and, after 30 s of operation, a load of 3 N.m was applied. Due to 

load applications, electromagnetic torques were imposed to the three-phase induction motor. 

In Figure 8, the response and reference curves of the variable position of the X base are shown, in which the step 

reference signal with amplitude of 100 mm is equivalent to a step of 1562.5 rad. This amplitude of linear magnitude 

corresponds to a displacement of the X base of the table to position 100 mm. Through the graphics of Fig. 7 and Fig. 8, 

it was possible to verify a settling time of 57.72 s, a steady state error of 0.13 % and non-occurrence of overshoot. 

Then, in Fig. 9, the reference curve of rotational speed of the rotor and the response curve obtained are presented. In 

this curve, it can be observed the three-phase induction motor drive by a ramp signal speed with amplitude of 31 rad/s, 

in the upward direction, keeping constant speed until the instant of 30 s. This constant speed of 31 rad/s corresponds to 

the      excitation due to an estimation of electromagnetic torque of 1 N.m, according to Tab. 2. At the instant 30 s, due 

to the estimation of electromagnetic torque of 3 N.m, a speed ramp with an amplitude of 23 rad/s was observed in the 

downward direction, remaining constant up to a drive      at null value, resulting, thus, in the braking of the three-phase 

induction motor. 

 

 
 

Figure 7. Response and reference curves of the angular position of the rotor. 

 

 
 

Figure 8. Response and reference curves of the position of the X base. 

 

 
 

Figure 9. Response and reference curves of rotational speed of the rotor. 
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In Figure 10, the response and reference curves of the X base speed are shown, in which the amplitude of          

1.984 mm/s of the ramp reference was equivalent to the 31 rad/s amplitude, and amplitude of 1.472 mm/s was 

equivalent to the amplitude of 23 rad/s. By analyzing the graphics of Fig. 9 and 10, null steady state errors were 

observed in the time interval in which speed references were constant. 

 

 
 

Figure 10. Response and reference curves of X base speed. 

 
Following, the response and reference curves of the stator current in the d and q components were analyzed, as 

shown in Fig. 11 and 12, respectively. In these graphics, the control of both components of the stator current was 

verified. In Figure 12, it was possible to observe the behavior of the      control variable curve, generated by the fuzzy 

controller of speed, verifying the current increase from 30 s, moment from which the electromagnetic torque imposed 

on the three-phase induction motor was increased from 1 N.m to 3 N.m. 

 

 
 

Figure 11. Response and reference curves of the stator current in the d component. 

 

 
 

Figure 12. Response and reference curves of the stator current in the q component. 

 
For the analysis of neural estimation of the electromagnetic torque, in Figure 13, the ce electromagnetic torque curve 

obtained by modeling of the motor, using Eq. (10), and the ceest estimated electromagnetic torque curve obtained by Eq. 

(16) were observed. In this graphic, the behavior of ceest torque in the load transitory and in the steady state of 

estimation was verified. For applications of the first load, 1 N.m, and of the second load, 3 N.m, distinctions between ce 

and ceest curves were rarely observed in the steady state. 

*b
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Figure 13. Curves of the electromagnetic torque and of the estimated electromagnetic torque. 

 

3.2 Second simulation 
 

In this simulation, firstly, a load of -2 N.m was applied, and, after 45 s of operation, a -5 N.m load was applied. 

In Figure 14, the response and reference curves of angular position of the rotor are shown, for a motor drive by step 

reference signal with amplitude of -1562.5 rad. In Figure 15, the response curve and the step reference of the position of 

the X base with amplitude of -100 mm are presented. This amplitude in millimeters is equivalent to a step of                  

-1562.5 rad, corresponding to a position of -100 mm in the X base. Through the graphics of Fig. 14 and 15, it was 

possible to verify a settling time of 67.65 s, a steady state error of 0.03 % and non-occurrence of overshoot. 

 

 
 

Figure 14. Response and reference curves of the angular position of the rotor. 

 

 
 

Figure 15. Response and reference curves of the position of the X base. 

 

Then, in Fig. 16, the reference curve of the rotation speed of the rotor and the response curve obtained are shown. In 

this graphic, the excitation of the machine for speed ramp with amplitude of -27 rad/s was in the downward direction, 

keeping constant speed until the instant of 45 s. This constant speed of -27 rad/s corresponded to the       reference due 

to an estimation of electromagnetic torque of -2 N.m. At the instant of 45 s, due to torque estimation of -5 N.m, a speed 

ramp with amplitude of -15 rad/s was used, in the upward direction, remaining constant up to a drive       at null value. 

In Figure 17, the response and reference curves of the X base speed are presented, in which the amplitude of             

-1.728 mm/s of the reference ramp is equivalent to the amplitude of -27 rad/s, and the amplitude of -0.96 mm/s is 

equivalent to the amplitude of -15 rad/s. Through the graphics of Fig. 16 and 17, null steady state errors were observed 

in the time interval in which speed references were constant. 
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Figure 16. Response and reference curves of rotational speed of the rotor. 

 

 
 

Figure 17. Response and reference curves of the X base speed. 

 

In Figures 18 and 19, the components of the stator current d and q are presented, respectively. In these graphics, it 

was verified that the components of the stator current were controlled. In Figure 19, from 45 s, the increase of the 

module of the currents    and    was verified, because, from that instant, the module of the electromagnetic torque 

imposed on the motor was increased from -2 N.m to -5 N.m. 

In Figure 20, the curves of the ce electromagnetic torque and of the ceest estimated electromagnetic torque are 

shown. In this graphic, it was possible to verify the behavior of the ceest torque in the load transitory and in the steady 

state of estimation. In the steady state, distinctions between ce and ceest curves were rarely observed. 

 

 
 

Figure 18. Response and reference curves of the stator current in the d component. 

 

 
 

Figure 19. Response and reference curves of the stator current in the q component. 
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Figure 20. Curves of the electromagnetic torque and of the estimated electromagnetic torque. 

  

4. COMMENTS AND CONCLUSIONS 
 

In this work, the simulation of a control system for application in a milling system was presented. A three-phase 

induction motor was used, controlled by intelligent control techniques, to drive the milling machine table. 

The performance of the control system was verified for the two directions of displacement of X base of the table, 

with changes in the electromagnetic torque imposed on the motor. 

In analyzing the results, a criterion of 2 % of the amplitudes of the references was used. Through the response 

curves of the two simulations, a maximum steady state error of 0.13 % was verified for the variable position, not 

existing overshoot in any of the tests. For the speed, the fuzzy controller made possible the obtaining of null steady state 

errors in both simulations, at intervals drive with constant speeds. Regarding the electromagnetic torque, the 

convergence of the two signals of torque estimation was observed, obtaining small errors in comparing the curves of ce 

and of ceest in the steady state. 

The fuzzy controller of speed, using the Takagi-Sugeno method, and the neural estimator of the electromagnetic 

torque, using the LMS algorithm technique, made possible the obtaining of satisfactory performance of the dynamic 

functioning of the motor. 

An important contribution of this work is the specification of the rotational speed of the rotor of a three-phase 

induction motor from the information of the signal of the estimated electromagnetic torque, using intelligent control 

techniques. 

As perspective of future work, it is planned to carry out experimental tests in a milling machine, with the feedrate 

specified in real time from the machining of each material. 
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