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Abstract. This paper intends to evaluate the impacts caused by inherent variabilities in optimal topologies of statically 
loaded structures. The selected topology optimization methodology is the Solid Isotropic Material with Penalization 

(SIMP) approach and the objective is to minimize the compliance of the structure. The uncertainty of five parameters 

has been evaluated: volume fraction, Young modulus, Poisson coefficient, boundary conditions and load. In order to 

perform this study, the authors have employed components of variation and design of experiments as statistical tools. It 

can be concluded that significant variations can be caused by the load and the volume fraction in the optimal topology. 

At the end, a robust topology for normal and uniform parameter distribution is proposed. The comparison between 

robust and deterministic topology is performed graphically.  
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1. INTRODUCTION 

 
Topology Optimization aims to identify optimal material layouts, in other words, determines whether there is 

material at a certain location or not. Loads and boundary conditions are not restrictions to the optimization algorithm. 
Usually the constraints are given in terms of deformation, stress, natural frequency, and volume. It is usually employed 
during the conceptual design phase yielding a proposal that can be further adjusted for performance and 
manufacturability. Topology optimization requires a structural analysis that is usually performed using finite element 
methods and an optimization algorithm to minimize a cost function subject to some restrictions. Diverse optimization 
techniques such as genetic algorithms, optimality criteria method, among others, can be employed. 

Additionally, the assessment and measurement of the uncertainty/variability during experiments is highly 
recommended. Topology optimization problems are no exception. For instance, Chen et al. (2009) have exemplified 
these variations in topology optimization by projects called Robust Shape and Topology Optimization (RSTO), in 
which random field uncertainties are considered and a robust design is implemented knowing these variations. Their 
study has shown that the difference between deterministic design and robust design is notable. However, their study has 
been focused on the robust shape design under fixed variations; there is no assessment of the uncertainties. In 
Asadpoure et al. (2011), a robust topology for structures under uncertainties has been provided as well. Nevertheless, in 
this article the variability have been also fixed and set only in the stiffness matrix, without further analysis of other 
possible variations. Tootkaboni et al. (2012) have studied topology optimization under uncertainties, by using a 
polynomial chaos approach. With pre-fixed parameters variability, a fairly difficult mathematical method to define the 
robust design is proposed. 

This paper proposes the study of uncertainty in a topology optimization experiment. Further, in the article, a robust 
shape topology is also found. Differently, the authors of this paper propose a study of the uncertainty before the robust 
design is modeled. Most importantly, the method proposed to the analysis is fairly simple and easy to be implemented. 
In addition, a simple method for modeling the robust design is employed. 

In order to measure these possible variations, caused by known uncertainty, and determine which parameters may 
cause the most variance in the final topology, statistical tools are used in this paper. As suggested by Yaman (2012), the 
method of Design of Experiments (DOE) is used, instead of the One Factor at Time (OFAT). In this way, it is possible 
to measure not only the variation in each parameter but also the variation caused by the interaction within variables.  
However, to utilize the best of the DOE, it is necessary to make a preliminary parameter analysis, the Component of 
Variation (COV) study. Both methods are described further in Section 2. The selected topology optimization problem is 
the compliance minimization of statically loaded structures implemented by Sigmund (2001) in Matlab®. The topology 
optimization routine is based on the Solid Isotropic Material with Penalization (SIMP) Method and is briefly explained 
in Section 2. The uncertainty of five parameters has been evaluated: volume fraction, Young modulus, Poisson 
coefficient, boundary conditions and load. Under these variabilities, different configurations can be found by the 
topology optimization routine.  The comparison between two different configurations, described by matrices, is 
performed by modifying these matrices into vectors and comparing these vectors using the MAC (Modal Assurance 
Criterion) number. This MAC number is explained in Section 2. The numerical results are shown in Section 3 and 
conclusions are drawn in Section 4. 
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2. METHODOLOGY 
 

This section presents the employed methodology in this manuscript. Firstly, the topology optimization problem is 
posed and the methodology to solve it is briefly explained. Afterwards the statistical tools (COV and DOE) are 
presented. At last, the use of the MAC number is explained. 
 
2.1 Topology Optimization 

 
To illustrate the proposed method for uncertainty analysis, the well-established topology optimization concept is 

employed. This concept is explained by Santos and Trevisan (2005) as a complete optimal geometrical definition, 
defined by the knowing of external actions as well as mechanical and geometrical restrictions. Sigmund (2001) 
proposes a MATLAB® code that implements a topology optimization routine based on the Solid Isotropic Material 
with Penalization (SIMP) Method. The method is explained in Rozvany et al. (1992), in which the idea is penalize 
porous regions, because of its high production cost, and therefore produce a solid that is mostly composed by solid parts 
and empty spaces. 

The SIMP Method fixates the material properties; variability is then imposed by the different relative densities in 
the discretization methods. The domain is set to be rectangular, in which square finite elements are used. Nelx is the 
number of elements in the x axis and Nely is the number of elements in the y axis. The method, then, has the objective 
of optimizing the Eq. 1. 
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U is the global displacement vector, F is the force vector, K is the global stiffness matrix, ue and ke are the elements 

of U and K, x is the density vector, xmin is the vector of minimum relative densities, N = (nelx * nely) is the element 
number, p is the penalization factor (in this article p=3), V(x) is the material volume, V0 is the calculated volume and 
f(volfrac) is the function relating both volumes. 

A simple OC (optimality criteria) iterative method is used for this optimization.  As suggested by Bendsøe (1995), 
Eq. 2 refers the optimization criteria. 
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Here, m is a positive limitation, η= ½ is a numerical dumping coefficient and Be is calculated following Eq. 3. 
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Using finite elements, Eq. 1, 2 and 3 are solved. A convergence coefficient between xe

new and xe is adopted as being 
1%. By this topology optimization, it is intended to realize an experiment to measure the variation in the final topology, 
depending on the variation in the initial parameters. The MATLAB® code is available in Sigmund (2001). 

 
2.2 Component of Variation (COV) 

 
Ross et al. (1995) defines the COV as a mean to plan adequate samples and therefore run the DOE. In order to plan 

a COV and a posterior DOE, it is first needed a sampling tree. The tree is a mere graphic or tabled representation of the 
variables and the way these variables interact with one another. It is a tool to represent the set of variables for each 
measurement during the experiment. The measures can then be obtained and analyzed using pertinent graphs. The 
variability chart shows which variable leads to the most variation in the measure, by illustrating the measurement and 
clearly identifying the variables with which this specific measurement have been made. 

Another important graphic to be analyzed is the Xbar/R. The graphic R determines if the measurement is under 
control. Only after verifying the control of the experiment the results may be considered into analysis. To the 
experiment to be under control, the points in the R graphic must be within the lines of limit. 
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The graphic Xbar illustrates if the major cause of variation is within the subgroup of analysis or outside. The 
subgroup analyzed is always the last level of the tree. If the points are outside the limits in the Xbar graphic, the major 
cause of variation is outside the subgroup. 

A well based decision to whether the variable is important to the uncertainty of the experiment can be made after 
analyzing both graphs. It is possible to refine the experiment, by withdrawing the effects of the subgroup in analysis, 
taking the average of measurements on that subgroup. That way, escalating to the top of the tree, all the important 
variables can be studied. 

 
2.3 Design of Experiments (DOE) 

 
Noesis Solutions (2011) defines DOE as a systematic mean to perform experiments, leading to a maximum gain of 

knowledge with less experimentation. Kaminari (2002) establishes that the method is used in scientific research to 
evaluate multiple parameters and their interaction. 

Multiple methods can be used to perform a DOE. For the purpose of this work, a well-established orthogonal 
method known as Full Factorial is used. In orthogonal methods, the parameters are independent of each other. 
Consequently, at each interaction new information is generated. The two level full factorial method is used to 
approximate linear functions and it is vastly used because it is rapid and efficient. The levels are set as ‘+’ and ‘-’. 

Figure 1 illustrates the interactions between parameters in a two level full factorial DOE with 3 parameters. 
 

 
 
Figure 1 – Schematic drawing – interactions two level full factorial DOE with 3 parameters. Font: Noesis Solutions 

(2011) 
 

DOE analysis is made through calculation of effects. Effect is a mean of the variation in results for ‘+’ and ‘-’ levels 
for each variable and its interactions. Table 1 presents an example to the calculation of effects. 

 
Table 1 – Example table for the calculation of effects. Font: Ross et al. (1995) 

 
A B AB Y 
+ + + 94 
+ - - 82 
- + - 78 
- - + 98 

 
The effect of B is calculated as shown in Eq. 4. 
 
        

              

 
  

     

 
  

     

 
          (4) 

 
The effects can be plotted and compared, in order to visualize the parameters that cause most variance in the final 

result. The normal probability graph can be used to see the most relevant variables. Knowing that effects must follow a 
straight line, the variables or interactions that distances from the line are the ones relevant for the uncertainty of the 
solution. 

All the graphs for the COV and DOE analysis were plotted using the JMP®10 software, which has a free trial 
license, available for 30 days. 

 
2.4 The MAC number 
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The number MAC is a statistic indicator illustrated by Allemang (2003). In this paper, it is used as a form to 

measure the variation between two vectorized matrices. The number is formulated as seen in Eq. 5. 
 

       
   

       
    

   
       

    
          (5) 

 
Where ψdr is the ‘d’ vector, mode ‘r’, ψcr is the ‘c’ vector, mode ‘r’ and ψH is the complex transpose conjugate 

(hermitian conjugate) of ψ. The vectors must be used in columns and for real numbers we have ψH = ψ’. 
The MAC number hence measures the variation between these two vectors ‘d’ and ‘c’. It assumes values between 0 

and 1, the closer to 1, the more similar are the analyzed vectors. For the purpose of this paper, a number which the more 
different the vector, the closer to 1 is needed. So Y = 1 - MAC is defined. 

 
3. RESULTS AND DISCUSSION 

 
This section presents to the reader the use of statistical tools mentioned in the previous section. Using the topology 

optimization MATLAB code presented by Sigmund (2001), a full COV is elaborated. Relevant parameters extracted 
from the COV are then used for the DOE analysis. At last, a robust topology is proposed. 

 
3.1 Experiment Method 

 
As previewed shown in the article, the statistical tools used by the authors are the COV and DOE, comparing the 

number Y=1-MAC for each interaction. The sampling tree is shown in Tab. 3, that can be seen further in the paper. 
Relevant parameters, which noticeable cause major variations in the final topology, were chosen to make the 

sampling tree. The parameter ‘f’ is the volume fraction, E is the Young module and nu is the Poisson coefficient. Nelx 
and Nely define the chosen domain and therefore are fixed. Load and Boundary conditions are inputed in the simulation 
using a user friendly interface designed by Zhao (2003). The domain is set to be {1 ≤ x ≤ 61; 1 ≤ y ≤ 21}. Load and 
boundary conditions are represented in the Tab. 2. 

 
Table 2 – Boundary conditions and load application points 

 
Situation 1 2 3 

Boundary condition – Y restriction (1,21) (1,19) - 
Boundary condition – X and Y restrictions (61,21) (61,21) - 

Load Application Points (28,1) (31,1) (34,1) 
 
Every Fy are considered to be 10N. 
 

3.2 COV analyzes 
 
First, the sampling tree must be fixed. Table 3 presents the tree used in this experiment. In order to compare the 

different topologies using the MAC number and run COV interactions, it is necessary to set a model optimal topology. 
Table 4 shows the defined parameters to this model optimization. The parameters are set in the mean point of the tree. 
Figure 2(a) illustrates the topology optimization result. 

 
Table 4 – Model optimization parameters 

 
Nelx Nely F E Nu Boundary 

condition 
Load 

60 20 0,45 0,9 0,4 1 2 
 
Using the parameters defined in Tab. 4, it is possible to run different topology optimizations. Figures 2(b), 2(c) and 

2(d) illustrate the variation depending on the input parameters. 
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Table 3 – Model optimization parameters 
 

Nelx Nely F E Nu Boundary 
condition 

Load Measurement 

60 20 0,4 1 0,3 1 1 1 
60 20 0,4 1 0,3 1 2 2 
60 20 0,4 1 0,3 1 3 3 
60 20 0,4 1 0,3 2 1 4 
60 20 0,4 1 0,3 2 2 5 
60 20 0,4 1 0,3 2 3 6 
60 20 0,4 1 0,5 1 1 7 
60 20 0,4 1 0,5 1 2 8 
60 20 0,4 1 0,5 1 3 9 
60 20 0,4 1 0,5 2 1 10 
60 20 0,4 1 0,5 2 2 11 
60 20 0,4 1 0,5 2 3 12 
60 20 0,4 0,8 0,3 1 1 13 
60 20 0,4 0,8 0,3 1 2 14 
60 20 0,4 0,8 0,3 1 3 15 
60 20 0,4 0,8 0,3 2 1 16 
60 20 0,4 0,8 0,3 2 2 17 
60 20 0,4 0,8 0,3 2 3 18 
60 20 0,4 0,8 0,5 1 1 19 
60 20 0,4 0,8 0,5 1 2 20 
60 20 0,4 0,8 0,5 1 3 21 
60 20 0,4 0,8 0,5 2 1 22 
60 20 0,4 0,8 0,5 2 2 23 
60 20 0,4 0,8 0,5 2 3 24 
60 20 0,5 1 0,3 1 1 25 
60 20 0,5 1 0,3 1 2 26 
60 20 0,5 1 0,3 1 3 27 
60 20 0,5 1 0,3 2 1 28 
60 20 0,5 1 0,3 2 2 29 
60 20 0,5 1 0,3 2 3 30 
60 20 0,5 1 0,5 1 1 31 
60 20 0,5 1 0,5 1 2 32 
60 20 0,5 1 0,5 1 3 33 
60 20 0,5 1 0,5 2 1 34 
60 20 0,5 1 0,5 2 2 35 
60 20 0,5 1 0,5 2 3 36 
60 20 0,5 0,8 0,3 1 1 37 
60 20 0,5 0,8 0,3 1 2 38 
60 20 0,5 0,8 0,3 1 3 39 
60 20 0,5 0,8 0,3 2 1 40 
60 20 0,5 0,8 0,3 2 2 41 
60 20 0,5 0,8 0,3 2 3 42 
60 20 0,5 0,8 0,5 1 1 43 
60 20 0,5 0,8 0,5 1 2 44 
60 20 0,5 0,8 0,5 1 3 45 
60 20 0,5 0,8 0,5 2 1 46 
60 20 0,5 0,8 0,5 2 2 47 
60 20 0,5 0,8 0,5 2 3 48 
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(a)                                                                                  (b) 

    
(b)                                                                                        (d) 

 
Figure 2 – (a) Model optimal topology, (b) Topology for the 4th Tree branch, (c) Topology for the 6th Tree branch  

and (d) Topology for the 26th Tree branch 
 

After running the simulation for all sampling tree branches, the number MAC must be calculated for each 
interaction. These results can be statistically analyzed using the variability chart and Xbar/R graphics. Figure 3 shows 
the variability chart for this first interaction. 

 

 
 

Figure 3 – Variability chart – 1st interaction 
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Figura 4 - Xbar/R graphic – 1st interaction 
 
Clearly, the font of variation is within the subgroup load. Figure 4 confirms this statement with the Xbar/R Graphic. 
These figures demonstrate that the main cause of variation in the final topology is the parameter ‘load’. However, it 

is intended to discover other possible causes that may be substantial. To make further assessments with the COV it is 
necessary to withdraw the effect of the ‘load’ parameter. By ascending in the sampling tree, using the result means to 
diminish a level, new results can be plotted and be analyzed in Fig. 5(a) and Fig. 5(b). 

 

     
 

(a)               (b) 
 

Figure 5 – (a) Variability chart of 2nd COV, (b) Xbar/R graphics – 2nd COV 
 

The major variation font is outside the observation group ‘Boundary conditions’. Another interaction must be made. 
Ascending in the sampling tree one more time, withdrawing the effects of the subgroup ‘Boundary conditions’, Fig. 6(a) 
and Fig 6(b) can be studied. 
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(a)              (b) 

 
Figure 6 – (a) Variability Chart for 3rd COV,  (b) Xbar/R graphics for 3rd COV 

 
By analyzing these graphics it is possible to conclude that the major font of variation is within the analyzed 

subgroup ‘nu’. To obtain a complete parameter analyses, another COV is made. Figure 7(a) and 7(b) show the results. 
 

    
 

(a)              (b) 
 

Figure 7 – (a) Variability chart for 4th COV, (b) Xbar/R graphics for 4th COV 
 

Studying figures 7(a) and 7(b), it is possible to conclude that the major cause of variation is outside the subgroup 
studied and hence the fraction volume ‘f’ needs to be analyzed in the DOE. The four rounds of COV made it possible to 
determine which parameters variation implicates in the most changes in the final optimization. For the DOE, ‘load’, 
‘nu’ and ‘f’ are going to be analyzed. 

 
3.3 DOE analyzes 
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After the conclusion of the COV experiments, it is possible to use the resulting parameters into a DOE experiment. 

The volume fraction is set to vary from 0.4 to 0.5, maintaining a 10% of variation in the total mass value. The ‘-’ level 
for the Poisson coefficient is set by the ABNT norm for concrete and the ‘+’ level is adopted as a possible variation 
demonstrated by Pinto et al. (2010). Table 5 summarizes the varying parameters used for the DOE experiment. Nelx is 
fixed in 60, Nely in 20, E is set to be 1 and the boundary condition used is also 1. 

 
Table 5 – DOE reference parameters 

 
Factor Level - Level + 
Load Applied in center Applied 5% to right 
Nu 0,2 0,3 
F 0,4 0,5 

 
A two level full factorial design is used. Figure 8(a) and Fig. 8(b) finalize the parameters analyzes. 
 

   
 

Figure 8 – (a) Parameters effects graphic, (b) Normal probability graphic 
 

In Fig. 8(a) the parameters effects can be easily seen. It is noticeable that ‘load’ and ‘load*f’ are the parameters that 
most interfere in the end topology. Figure 8(b) assures the two parameters mentioned before as the main causes of 
variation in the optimal topology. Being this the case, these are the parameters to be studied for a robust topology. 

 
3.4 Robust Topology 

 
In order to present a possible robust design that incorporates the variation studied earlier in this paper, the 

superimposition theorem is used. The parameters variations are shown in Tab. 6. 
 

Table 6 – Parameters adopted to robust design 
 

Nelx Nely F Nu Boundary 
condition 

Load 

60 20 Variation 
within 0,4 
and 0,43 

0,2 1 10% variation, 5% at the left 
and 5% at the left of the domain 

center 
 
Two different cases are assumed: in case 1 the parameters vary within a bell curve; in case 2 the parameters vary 

uniformly. The weights used to the bell curve distribution are shown in Fig. 9 and it is used to find the robust topology. 
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Figure 9 – Bell Curve and its probabilities Font: Wikimedia commons (2001) 
 

The robust design using this parameters variation is hence normalized, in order to maintain the total mass in the 
system. The result can be seen in Fig. 10(b). A comparison can be performed with Fig. 10(a), which is the result of a 
deterministic simulation. 

 

      
(a) (b) 

 
(c) 

Figure 10 – (a) Deterministic topology, (b) Robust topology – Bell Curve, (c) Robust topology – uniform variations 
 

A visual comparison between the two images can easily be performed and it is noted that the robust topology is 
more round. Also, the trusses are thicker, resulting of the sum of various different input parameters. 

In order to provide a robust design using uniformed variation in the parameters, no weight needs to be used. The 
mass matrix should be normalized after the sum of all the result simulation. The result is seen in Fig. 10(c). 

In this case the influence of parameter variations are more pronounced, which may be seen by the thicker trusses. 
 

4. CONCLUSION 
 
Statistical tools were used to study the variation in main parameters in a topology optimization study. Overall, the 

methods used to measure the variation were proven useful, easy and efficient. 
The work demonstrates that using COV and DOE as a mean to verify the major causes of variation is not only 

possible but may also be highly recommended. These methods rapidly generate graphics that are easy to understand and 
manipulate, needing few computer time. The use of the MAC number, furthermore, is proven to be simple and correct. 
At last, the topology optimization used together with the friendly interface defines a rapid way to visualize the optimal 
topology, providing a matrix easy to manipulate. 

The proposed robust topology, discussed at the last portion of the article, demonstrates visually the importance in 
considering variation in the projects. By knowing that the factor f and nu are the most important cause of variation, an 
optimal topology is successfully presented considering these variations. 

For next studies, the authors propose a validation of the robust topology, using structural and probability 
considerations. Moreover, it is proposed a new study with larger fonts of variation, which may generate diverse 
topologies. 
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