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Abstract. In the latter decades, numerical studies of the centrifugal instability have attracted interest of the scientific com-
munity due to their engineering applications. Since in practical situations the geometry of the problem is usually complex,
the investigation of the effects of curvature variations is justified. The aim of this work is to investigate numerically how
the curvature variations influence in the development of the primary instability. A Direct Numerical Simulation code
written in vorticity-velocity formulation is used. The flow is decomposed into steady and perturbation parts. Periodicity
in the spanwise direction is assumed in agreement with experimental observations. The time derivative is integrated using
the classical fourth-order Runge-Kutta method. High-order, compact, finite-difference schemes are applied to discretize
the spatial derivatives in the streamwise and wall normal directions. A spectral method is used to discretize the spatial
derivatives in the spanwise direction. The Poisson equation is solved by a multigrid technique. The use of the Message
Passing Interface library is adopted for code parallelization. The results are in agreement with predictions based on
the Parabolized Stability Equation that are available in the literature. Convex curvature provides means for control of
laminar flows as it modifies the inflectional spanwise and normal profiles of the streamwise velocity.
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1. INTRODUCTION

It is well known that imbalances between the radial pressure gradient and the centrifugal forces in a boundary layer
may generate a secondary motion called Gortler instability. The Gortler flow distortions can produce strong secondary
instability rising the flow to turbulence.

Experimental and numerical studies have been carried out aimed to better understanding of this phenomena. Classical
experiments given by Swearigen and Blackwelder (1987) explicit the initial linear behavior of the Gortler vortices. In
their studies both the mushroom-shaped structure and varicose and sinuose instabilities were observed in a flow over a
wall with constant curvature.

However in practical situations the geometry of the problem is usually complex. As a consequence experimental
investigations are difficult and numerical investigations become attractive alternatives.

Gortler vortices development over walls of variable curvature geometries was studied by Benmalek and Saric (1994).
Their results explicit that convex regions has a stabilizing behavior over the growth of the vortices. This stable behavior
is justified by Benmalek and Saric (1994) due to the tendency of the convex curvature in the elimination of inflectional
streamwise velocity profile in the spanwise and wall-normal direction.

The present work provides Direct Numerical Simulation(DNS) results aimed to control the transition process by the
use of variable curvature geometries.

2. FORMULATION

It is considered the motion of an incompressible, isothermal and Newtonian fluid flow on variable curvature ge-
ometries. The Navier-Stokes system of equation in vorticity—velocity formulation is used as alternative of the primitive
variable one. Here vorticity is defined as the opposite of the curl of the velocity vector.

The same coordinate system presented by Floryan and Saric (1982) is used. The non-dimensional system of equation
is expressed by
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where W, W, and w, are the vorticity components in stream(x ), normal(y) and spanwise(z) directions respectively. u, v
e w are the velocity components in the z, y and z direction. The time is represented by the ¢ variable.

The reference length is a characteristic plate length L and the reference velocity U, is the free stream velocity.
The Reynolds number is given by Re = Uy, L/v, where v is the kinematic viscosity. The Gortler number is given by
Go = Re"?*\/R/L. The terms G0286L12 (V/Re) and G02%%2 (V/Re) are the curvature terms. R is the curvature radius.

The continuity equation is given by

du Ov Ow

Using the vorticity definition and the Eq. (4) one can obtain the following Poisson type equations:
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A perturbed formulation is applied, where a generic function fis rewritten as
F=t+1, @®)

where fj, is the base and f is the perturbation part of the function. frepresent the global vorticity and velocity variables.
Here the base flow is considered two-dimensional.

A system of equations is obtained by introducing Eq. (8) in Eq. (1)-(3) and (5)-(7), and then subtracting the base flow.
Thus,
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where the nonlinear terms a, b, ¢ and d are:
a = wy(vp+v) —wy(up + u), (15)
b = (ws +w.)(up +u) —wyw, (16)
¢ = wyw — (Wy +ws;)(vy +0), 17)
d = 2upu+ v’ (18)

Regarding the boundary conditions, at the upper boundary the flow was assumed to be irrotational. At the wall, the
streamwise and normalwise velocity components are zero by the no-slip condition. At the outflow boundary the second
derivative of the velocity and vorticity components are set to zero. Inflow boundary are specified based on a Blasius
similar solution. The base flow is created by the use of the Blasius solution as an initial approximation (Schlichting,
1979).
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3. NUMERICAL METHOD

Justified by experimental evidences it is assumed periodicity in the spanwise direction. All the variables, in this sense,
can be written as combination of K Fourier modes as follow

K
fly,z,t) =Y Fulw,y,t)e” (19)
k=0

where f a variable, 7 is the imaginary unit , k is a Fourier mode and -y, is the wave number in the spanwise direction. The
wave number is defined as
_ 27k
Tk = N,
where )\, is the spanwise wave length of the fundamental Fourier mode.
The system of equation (9)-(14) is expressed (for each k Fourier mode) by:
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where Vi = (86722 + 88722 — 'yi)
The equations (20) to (25) are solved in a domain represent by Fig. 1.
Y4
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Figure 1: Physical domain

Calculations are performed in an orthogonal mesh parallel to the wall. A stretching technique is applied in the wall-
normal direction. The fluid enters the computational domain at x = x( and exits at * = Z,4,. Disturbances are inserted
in the domain by a mass suction/injection technique at the wall. The disturbance region is located between z; and z5. In
the region between x3 and x4 a buffer zone is adopted in order to avoid reflections (Kloker et al., 1993). The baseflow
solution uses boundary layers based on two-dimensional Navier-Stokes solution.

The temporal integration of the transport of vorticity equations are discretized by the use of a 4* order Runge-Kutta
method (Ferziger and Peric, 1997). Spatial derivatives are calculated using high order compact finite difference schemes
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(Souza et al., 2005; Lele, 1992). The V-Poisson equation (24) — is solved by the use of a multigrid method called Full
Approximation Scheme(FAS).

The large amount of points necessary to obtain acceptable results in a physical way justify the use of a parallel
strategy. A domain decomposition strategy in the streamwise direction is adopted. The physical domain is partitioning
into n equal parts. There is an overlap region and communications points are conveniently placed. The Message Passing
Interface(MPI) library is used for the message-passing process.

4. THE CONCAVE-CONVEX CASE
Following Benmalek and Saric (1994) it is considered a wall distribution case given by
k(xz) = —tanh [3 (x — 8)] ko (26)

where K is the curvature value at x = 1. This function is showed in Fig. 2 and can be interpreted as a concave circular
arc attached to a convex one of same radius by a smooth curvature variation.

Figure 2: Wall curvature distribution - concave/convex case

It is important to notice that the convex region starts at the streamwise position z = 8 and at this position the vortices
did not reach the saturation region.

Some linear simulations are carried out in order to find an acceptable range of disturbance amplitudes which represents
Benmalek’s test case. A linear simulation demands less computational time and its use can be justified due to the linear
behavior of the Gortler modes close to the streamwise position z = 8.

Most parameters used for the numerical simulations agree with Swearigen and Blackwelder (1987) experimental data.
Itisused L = 107! m and U, = 5 m/s as length and velocity references. The Reynolds number is Re = 33124. The
streamwise spatial step is 1.5 x 1072, The initial step in the normal direction is 5.0 x 10~# and the stretching factor is
1%. The domain is discretized using 1625 points in the streamwise direction and 257 points in the normal flow direction.
The wavenumber in the spanwise direction is given by v = 34.9066. The disturbances are inserted between points 15 and
50 of the mesh in the z direction. The relaminarization zone is defined between the points 1515 and 1565. The time step
isdt =7.8x 1074,

Fig. 3 shows the energy of the second mode taking A = 3.5 x 1072,5.0 x 1073,6.5 x 1073 and 1 x 10~2 as the
maximum amplitude of the disturbance. The metric energy is defined (Lee and Liu, 1992; Li and Malik, 1995) as

E, = /Ooo (JUR? + [Vie|* 4+ [Wi|?) dy if k>0, (27)
and

E) = /OOO % (|Uk]* + [Wy|?) dy for k=0. (28)

Analyzing Fig. 3 a disturbance amplitude between 3.5 x 1073 and 5.0 x 103 should be chosen. It is important to
notice that the similar behavior of all the linear cases and the Benmalek and Saric (1994) result for the Fourier mode under

investigation suggests no significant influence of nonlinearities. However a nonlinear numerical simulation is adopted and
the maximum amplitude of disturbance is taken as 4 x 1073,
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Figure 3: Second mode energy behavior (£},) for different maximum disturbance amplitudes by linear simulations.

Nonlinear calculations are carried out using 32 physical points in the physical space and 11 Fourier modes in the
Fourier space. The energy behavior in the streamwise direction of the modes O to 3 is present by Fig. 4

i ‘ —  DNS
o o Benmalek and Saric (1994)

DDDE\:H:D om
]
a0 000

log(E,)

Figure 4: Energy behavior (E}) of modes 0 to 3 - Concave/Convex curvature case

3317



ISSN 2176-5480

J. K. Rogenski, L. F. Souza, and J. M. Floryan
Influence of Curvature Variations on the Primary Instability Development

Figure 4 explicits the influence of the convex curvature in terms of flow control. It is important to notice that there is
a good agreement between the DNS simulation result and one presented by Benmalek and Saric (1994).

5. THE CONCAVE-ZERO CURVATURE CASE
In this case it is considered a wall distribution case given by
k(z) = =0.5{1 — tanh [3 (z — 10.24)]} o, (29)

where kg is the curvature value at x = 1. This function is showed in Fig. 5 and can be interpreted as a concave circular
arc attached to a flat plate by a smooth curvature variation.

in

0.5 -

0.5

Figure 5: Wall curvature distribution - concave/zero curvature case

The flat region starts after + = 10.24 and at this position the vortices have already reached the saturation region. For
this case the maximum amplitude of disturbances is taken A = 7.0 x 1073,
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Figure 6: Energy behavior (E}) of modes 0 to 3 - Concave/Zero curvature case
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Figure 6 explicits the influence of the zero curvature geometry. DNS result is different from the Benmalek and Saric
(1994) after the curved wall region. The flat plate region provides some control over the flow but in a less effective way
than results presented in literature since the energy of the modes decays slowly.

6. CONCLUSIONS

The use of Direct Numerical Simulation even demanding a high computation cost can be consider as a valuable
strategy aimed to a better understating of the physical phenomena.

Specifically the use of this strategy to investigate the influence of curvature variation on flow control provides results
that are in agreement with the literature. A convex curvature is able to suppress energy grows.

In the case of concave/flat plate simulation, the results did not agree with the presented results from Benmalek and
Saric (1994). This differences can be explained by the simplifications in the governing equations to obtain the Parabolized
Stability Equations, and also by the order of the approximation adopted by them.
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