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Abstract. The objective of this paper is to propose analytical approximations for solving an extended version of the
Graetz problem with axial diffusion in an infinite domain. The adopted methodology consists of transforming the original
convection-diffusion partial-differential equations into a simpler one-dimensional form, using approximation rules pro-
vided by the Coupled Integral Equations Approach (CIEA). This technique is employed for calculating the mean stream
temperature in thermally developing fluid flow, and different levels of approximations are analyzed. The results are
compared with an exact analytical solution to the problem, and a solution using the Classical Lumped System Analysis
(CLSA). The proposed solutions are simple and show very good agreement with the exact solution

Keywords: lumped-capacitance, convection-diffusion, analytical solution, mathematical modeling

1. INTRODUCTION

When a fluid is flowing, laminar and fully developed, in a cylindrical tube or within a parallel plates channel with
heating or cooling applied at the solid walls, the solution of the energy equation depends on the value of a single dimen-
sionless group, the well-knonwn Péclet number. In classical Gratez problems, this parameter is usually assumed large
such that the heat transport equation is simplified as axial diffusion becomes negligible. When axial diffusion is taken
account, an extended Graetz problem is obtained. An exact solution for this problem was presented by Acrivos (1980),
Vick and Özisik (1981) and Ebadian and Zhang (1989) for low Péclet numbers and different boundary conditions. Ap-
proximate solutions were used also (Villadsen and Michelson, 1976), (Laohakul et al., 1985) and (Barros and Sphaier,
2012). The purpose of this paper, is to present simple approximate solutions for the problem in an infinite domain with a
discontinuous boundary condition (wall temperature given by a step-function), including the effects of axial diffusion.

Approximating an integral by a linear combination of the integrand values and its derivatives at the integration limits
was an idea originally developed by Hermite (1878) and first presented by Mennig et al. (1983), the first ones to use
this two-point approach, deriving it in a fully differential form called Hα,β . Using the Hermite formulas in improved-
lumped formulations is known as the Coupled Integral Equation Approach (CIEA), which can be found in a variety of heat
transfer studies. Recent applications include ablation (Ruperti et al., 2004), drying (Dantas et al., 2007), heat conduction
with temperature-dependent conductivity (Su et al., 2009) and adsorbed gas storage (Sphaier and Jurumenha, 2012). In
this study, the CIEA is employed for the problem of thermally developing fluid flow within a parallel-plates duct. With
this approach, enhanced lumped-differential formulations for representing the problem are obtained. The formulations are
naturally simpler the the original equation since they involve simple ODEs for determining the mean stream temperature,
while the original problem requires the solution of a PDE for calculating the temperature field, and from this result
calculating the same averaged mean stream temperature.

2. PROBLEM FORMULATION AND HERMITE APPROXIMATION

In order to illustrate the proposed methodology, a general problem of flow within parallel plates is considered, which
written in dimensionless form is given by:

u∗
∂θ

∂ξ
= Pe−2

∂2θ

∂ξ2
+

∂2θ

∂η2
, θ(0, η) = 0,

∣∣∣∣∂θ∂ξ
∣∣∣∣
ξ→±∞

< ∞, (1a)(
∂θ

∂η

)
η=0

= 0, θ(ξ, 1) = U1(ξ), (1b)

where U1(ξ) is the Heaviside function, i.e., U1 = 1, for ξ ≥ 0 and U1 = 0 otherwise; the employed dimensionless
parameters and variables are defined as:

Pe =
ūH

α
η =

y

H/2
, ξ =

x

L
, L =

H

2
Pe, θ =

T − Tmin

Tmax − Tmin
, (2)
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The basis for the Coupled Integral Equations Approach (CIEA) is the Hermite approximation of an integral, denoted,
Hα,β , which is given by the general expression:∫ xi

xi−1

f(x)dx =
α∑
ν=0

cν(α, β)hν+1
i f (ν)(xi−1) +

β∑
ν=0

cν(β, α)(−1)νhν+1
i f (ν)(xi) + Eα,β (3a)

where,

hi = xi − xi−1, cν(α, β) =
(α+ 1)!(α+ β − ν + 1)!

(ν + 1)!(α− ν)!(α+ β + 2)!
(3b)

and f(x) and its derivatives f (ν)(x) are defined for all x ∈ [xi−1, xi]. Eα,β is the error in the approximation. It is assumed
that f (ν)(xi−1) = f

(ν)
i−1 for ν = 0, 1, 2, . . . , α and f (ν)(xi) = f

(ν)
i for ν = 0, 1, 2, . . . , β.

The Hermite integration formula can provide different approximation levels, starting from the classical lumped system
analysis towards improved lumped-differential formulations. A detailed error analysis of the application of the CIEA to
diffusion problems using H0,0, H0,1, H1,0, and H1,1 Hermite approximations was carried out in (Alves et al., 2000).
Since approximations of order higher than H1,1 involve derivatives of order higher than one, these are avoided for the
sake of simplicity of the methodology. Hence, only the two different approximations below are considered:

H0,0 ⇒
∫ h

0

f(x) dx ≈ 1

2
h(f(0) + f(h)), (4a)

H1,1 ⇒
∫ h

0

f(x) dx ≈ 1

2
h(f(0) + f(h)) +

1

12
h2(f ′(0)− f ′(h)), (4b)

which correspond to the well-known trapezoidal and corrected trapezoidal integration rules, respectively.

3. PLUG-FLOW ANALYSIS

For the simplified plug-flow case, u∗ = 1 and the mean stream temperature equals the average temperature definition.
Integrating equations (1a) and applying the average definition leads to the following ODE system:

dθ

dξ
= Pe−2

d2θ

dξ2
+

(
∂θ

∂η

)
η=1

, θ(ξ, 1) = U1(ξ),

∣∣∣∣dθdξ

∣∣∣∣
ξ→±∞

< ∞, (5)

The Classical Lumped-System Analysis (CLSA) consists in approximating the averages directly by boundary values,
which corresponds to applying the rectangular integration approximation rule.

In order to avoid a constant mean stream temperature, and in order to obtain a relation that leads to θ(ξ, 0) different
than θ(ξ, 1), the following integral approximations are used:

θ(ξ) =

∫ 1

0

θ dη ≈ θ(ξ, 0),

∫ 1

0

∂θ

∂η
dη ≈

(
∂θ

∂η

)
η=1

(6)

which leads to the following relation for the wall derivative:(
∂θ

∂η

)
η=1

≈ θ(ξ, 1) − θ(ξ) = 0 − θ(ξ), for ξ < 0 and (7)

(
∂θ

∂η

)
η=1

≈ θ(ξ, 1) − θ(ξ) = 1 − θ(ξ), for ξ > 0. (8)

In order to guarantee the continuity at ξ = 0, the following coupling conditions are employed:

lim
ξ→0−

θ(ξ) = lim
ξ→0+

θ(ξ) and (9)

lim
ξ→0−

(
dθ

dξ

)
= lim
ξ→0+

(
dθ

dξ

)
, (10)

such that the solution of the averaged system (5) is given by:

θ(ξ) =

exp
(

Pe2 + κPe ξ/2
)
·
(

1
2 −

Pe
2κ

)
, if ξ ≤ 0

1 − exp
(

Pe2 − κPe ξ/2
)
·
(

1
2 + Pe

2κ

)
, if ξ > 0

(11)

where κ =
√

4 + Pe2.
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3.1 Improved Lumped-System Analysis

3.1.1 H0,0/H0,0 formulation

Using the H0,0 scheme for approximating the integrals of θ and its derivative yields:∫ 1

0

θ dη ≈ 1

2

(
θ(ξ, 0) + θ(ξ, 1)

)
,

∫ 1

0

∂θ

∂η
dη ≈ 1

2

((
∂θ

∂η

)
η=0

+

(
∂θ

∂η

)
η=1

)
. (12)

Using the boundary conditions and solving for the wall derivative gives:(
∂θ

∂η

)
η=1

≈ − 4 θ(ξ) for ξ < 0 and (13)

(
∂θ

∂η

)
η=1

≈ 4
(
1 − θ(ξ)

)
for ξ > 0, (14)

such that the solution of the averaged system (5) is given by:

θ(ξ) =

exp
(

Pe2 + κPe ξ/2
)
·
(

1
2 −

Pe
2κ

)
, if ξ ≤ 0

1 − exp
(

Pe2 − κPe ξ/2
)
·
(

1
2 + Pe

2κ

)
, if ξ > 0

(15)

where κ =
√

16 + Pe2.

3.1.2 H1,1/H0,0 formulation

This scheme s based on using H1,1 approximation for the temperature integral:∫ 1

0

θ dη ≈ 1

2

(
θ(ξ, 0) + θ(ξ, 1)

)
+

1

12

((
∂θ

∂η

)
η=0

−
(
∂θ

∂η

)
η=1

)
(16)

and the same H0,0 approximation for its derivative integral. Applying boundary conditions and solving for the wall
derivative yields:(

∂θ

∂η

)
η=1

≈ − 3 θ(ξ) for ξ < 0 and (17)

(
∂θ

∂η

)
η=1

≈ 3
(
1 − θ(ξ)

)
for ξ > 0, (18)

such that the solution of the averaged system (5) is given by:

θ(ξ) =

exp
(

Pe2 + κPe ξ/2
)
·
(

1
2 −

Pe
2κ

)
, if ξ ≤ 0

1 − exp
(

Pe2 − κPe ξ/2
)
·
(

1
2 + Pe

2κ

)
, if ξ > 0

(19)

where κ =
√

12 + Pe2.

3.1.3 H1,1/H1,1 formulation

This approximation scheme relies on using the H1,1 for approximating the integral of θ and its derivative, the later
being given by:∫ 1

0

∂θ

∂η
dη ≈ 1

2

((
∂θ

∂η

)
η=0

+

(
∂θ

∂η

)
η=1

)
+

1

12

((
∂2θ

∂η2

)
η=0

−
(
∂2θ

∂η2

)
η=1

)
(20)

U1(ξ) − θ(ξ, 0) ≈ 1

2

(
∂θ

∂η

)
η=1

+
1

12

((
∂θ

∂ξ

)
η=0

− Pe−2
(
∂2θ

∂ξ2

)
η=0

)
(21)
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Eliminating the wall derivative from the previous equation and the H1,1 temperature integral, and substituting in the
integrated energy balance leads to:

dθ

dξ
= Pe−2

d2θ

dξ2
+ 6 θ0 − 12 θ(ξ) and Pe2

(
48 θ0 − 72 θ(ξ) +

dθ0
dξ

)
=

d2θ0
dξ2

, for ξ < 0, and (22)

dθ

dξ
= Pe−2

d2θ

dξ2
+ 6 + 6 θ0 − 12 θ(ξ) and Pe2

(
24 + 48 θ0 − 72 θ(ξ) +

dθ0
dξ

)
=

d2θ0
dξ2

, for ξ ≥ 0.

(23)

where θ0 = θ(ξ, 0). This coupled ODE system can be solved directly for θ; however the solution is not presented due to
space limitations.

4. LAMINAR-FLOW ANALYSIS

This section presents the methodology for laminar flow (Hagen-Poiseuille profile), u∗ = (3/2) ū
(
1− η2

)
, in which

the average is given by θ(ξ) =
∫ 1

0
θ(ξ, η) dη and the meam stream temperature is defined by θm(ξ) =

∫ 1

0
u∗θ(ξ, η) dη.

Averaging the transport equations, and substituting the mean stream temperature definition and boundary conditions lead
to:

dθm
dξ

= Pe−2
d2θ

dξ2
+

(
∂θ

∂η

)
η=1

, θ(ξ, 1) = U1(ξ),

∣∣∣∣dθmdξ

∣∣∣∣
ξ→±∞

< ∞. (24)

For isothermal wall different levels of approximation can lead to different lumped formulations, as described next.

4.1 Improved Lumped-System Analysis

4.1.1 H0,0/H0,0/H0,0 formulation

This scheme is based on using H0,0 approximation for the misture temperature integral:∫ 1

0

u∗θ dη ≈ 1

2

(
u∗(0) θ(ξ, 0) + u∗(1) θ(ξ, 1)

)
(25)

and the same H0,0 approximation for the temperature and for its derivative integral. Applying boundary conditions and
solving for the wall derivatives yields:(

∂θ

∂η

)
η=1

≈ 2U1(ξ)− 8

3
θm(ξ),

d2θ

dξ2
≈ 2

3

d2θm
dξ2

(26)

such that the solution of the averaged system (24) is given by:

θm(ξ) =

exp
(

3 Pe2 + κPe ξ/4
)
·
(

3
8 −

9Pe
8κ

)
, if ξ ≤ 0

3
4 − 3 exp

(
3 Pe2 − κPe ξ/4

)
·
(

1
8 + 3Pe

8κ

)
, if ξ > 0

(27)

where κ =
√

64 + 9 Pe2.

4.1.2 H1,1/H0,0/H1,1 formulation

This scheme is based on using H1,1 approximation for the misture temperature integral and for the averaged tempera-
ture integral:

∫ 1

0

u∗θ dη ≈ 1

2

(
u∗(0) θ(ξ, 0) + u∗(1) θ(ξ, 1)

)
+

1

12

((
∂(u∗θ)

∂η

)
η=0

−
(
∂(u∗θ)

∂η

)
η=1

)
(28)

∫ 1

0

θ dη ≈
(
θ(ξ, 0) + θ(ξ, 1)

)
+

1

12

((
∂θ

∂η

)
η=0

−
(
∂θ

∂η

)
η=1

)
(29)
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and the sameH0,0approximation for its derivative integral. Applying boundary conditions and solving for the wall deriva-
tives yields:(

∂θ

∂η

)
η=1

≈ 8

3

(
U1(ξ) − θm(ξ)

)
,

d2θ

dξ2
≈ 8

9

d2θm
dξ2

(30)

such that the solution of the averaged system (24) is given by:

θm(ξ) =

exp
(

9 Pe2 + κPe ξ/16
)
·
(

1
2 −

9Pe
2κ

)
, if ξ ≤ 0

1 − exp
(

9 Pe2 − κPe ξ/16
)
·
(

1
2 + 9Pe

2κ

)
, if ξ > 0

(31)

where κ =
√

768 + 81 Pe2.

4.1.3 H1,1/H1,1/H1,1 formulation

This scheme is based on using H1,1 approximation for the derivative temperature integral:∫ 1

0

∂θ

∂η
dη ≈ 1

2

((
∂θ

∂η

)
η=0

+

(
∂θ

∂η

)
η=1

)
+

1

12

((
∂2θ

∂η2

)
η=0

−
(
∂2θ

∂η2

)
η=1

)
(32)

and the same H1,1approximation for the averaged and misture temperature integral. Using equation (1a), we have the
below relations:(

∂2θ

∂η2

)
η=0

=
3

2

dθ0
dξ
− Pe−2

d2θ0
dξ2

e
(
∂2θ

∂η2

)
η=1

= 0 (33)

Substituting boundary conditions leads to:

dθm
dξ

= Pe−2
d2θ

dξ2
+

1

9

(
24U1(ξ)− 24 θm(ξ) − 3

dθm
dξ

+ 2 Pe−2
d2θm
dξ2

)
e (34)

dθ

dξ
=

1

108

(
12U1(ξ) + 96 θm + 3

dθm
dξ
− 2 Pe−2

d2θm
dξ2

)
(35)

This coupled ODE system can be solved directly for θm; however the solution is not presented due to space limitations.

5. RESULTS AND DISCUSSION

The previous solutions are compared with the exact solution of the Graetz problem. Considering a plug-flow profile,
the exact solution is given by:

θ(ξ) =

{∑∞
n=1 An exp(βn ξ), if ξ ≤ 0∑∞
n=1 Bn exp(γn ξ), if ξ > 0

(36)

where,

βn =
Pe

2

(
Pe +

√
Pe2 + (2n− 1)

2
π2

)
, γn =

Pe

2

(
Pe−

√
Pe2 + (2n− 1)

2
π2

)
, (37)

bn =
2 (−1)n

π(1− 2n)
, (38)

An =
2 γn b

2
n

γn − βn
, and Bn =

2βn b
2
n

γn − βn
(39)

And for a laminar profile, the exact solution is given by:

θm(ξ) =

{∑∞
n=1 A

+
n Γn (ξ), se ξ ≤ 0∑∞

n=1 B
+
n Φn (ξ), se ξ > 0

(40)

where the functions Γ e Φ are linear combinations of exponentials functions, as described in details in (Sphaier, 2012).
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Figure 1 shows a comparison of all employed approximate schemes and the exact solution. As can be seen, the
CLSA solution underestimates the mean temperature by a significant amount, while the H0,0/H0,0 scheme overestimate
it. However, both H1,1/H0,0 and H1,1/H1,1 show a very good agreement with the exact solution. When looking into the
effect of axial diffusion, it is cleat that this phenomena has a negligible effect the on mean temperature distribution for
Pe� 1.

Exact
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H00 � H00
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H11� H11

-1 1 2 3
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0.6
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H11� H00

H11� H11

-1 1 2 3
Ξ

0.2

0.4

0.6

0.8

1.0
Θ

Pe = 100

Figure 1. Comparison between different lumped approximation schemes and exact solution for different Péclet numbers
for a plug-flow.

Next, in fig. 2, a similar comparison with laminar flow is shown. As one can observe, the CLSA solution and the
H0,0/H0,0/H0,0 do not provide a good approximation. Moreover, theH1,1/H0,0/H0,0 andH1,1/H0,0/H1,1 overestimate
the mean temperature. On the other hand, the H1,1/H1,1/H1,1 approximation scheme shows a very good agreement with
the exact solution.

Exact
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H11� H00 � H00

H11� H00 � H11

H11� H11� H11

- 2 -1 0 1 2 3
Ξ

0.2

0.4

0.6

0.8

1.0

1.2
Θm

Pe = 100

Figure 2. Comparison between different lumped approximation schemes and exact solution for different Péclet numbers
for a laminar flow.

Subsequently, figure 3 shows a comparison of the maximum absolute error resulting from the different approximate
solutions for a range of values of the Péclet number. The left plot corresponds to the plug-flow case while the other
corresponds to the laminar flow case.
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Figure 3. Comparison between maximum error of different lumped approximation schemes and exact solution for different
Péclet numbers.

Finally, figure 4 shows a comparison between different schemes and the exact solution at the discontinuity point.
For the plug-flow case (left plot) all schemes underestimate the mean temperature. For the laminar flow case, the
H1,1/H1,1/H1,1 scheme shows a good agreement with the exact solution for the entire Péclet number range. One should
also observe that, as Pe→∞, the mean stream temperature at ξ = 0 tend to zero for all approximations.
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Figure 4. Comparison between different lumped approximation schemes and exact solution for different Péclet numbers.

6. CONCLUSIONS

This paper presented an alternative approach for calculating the mean stream temperature for dynamically-developed
and thermally-developing flow with a discontinuous wall boundary condition, comprising an extended version of the
Graetz problem. An approximate analytical methodology, based on the CIEA, was employed, based on the Hermite
approximation formulas. The simplified case of plug-flow and a laminar flow case were presented for illustrating the
methodology and comparing the results with an exact solution with no approximations. The results showed that some
approximation schemes lead to very good agreement with the two-dimensional Graetz (exact) solution. It was also seen
that, for the approximation schemes that do not provide a good agreement, there is a tendency where the approximate
solutions underestimate the exact solution at the discontinuity point.
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