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Abstract. The flow of waxy crude oils in deep water is an important problem in the oil industry. At this location, the
temperature environment can be extremely cold (4 degrees Celsius). The oil generally leaves the reservoir at a high
temperature (60 degrees Celsius) when the oil behaves essentially as a Newtonian fluid. However, when there is a break
down on the pumping process, the oil is subjected to a cooling process. This cooling makes wax to precipitate, forming
crystals that grow, merge with other crystals and transforms the oil into a gel-like material. The gelled oil present some
non-Newtonian features and the main one is the presence of a temperature-dependent yield-stress. When there is a shut
down for operational reasons, the cooling process is more severe, due to the fact that the fluid is at rest. Farther from
the reservoir, the material achieves the environmental temperature and the gelled structure blocks the pipeline. Hence,
a non-homogeneous yield stress distribution is obtained. In order to re-start the flow the pressure needed to breakdown
the structure of the gelled oil is higher than the steady-state conditions. In this work we numerically solve the flow of
a waxy crude oil with temperature-dependent properties in a pipe submitted to different temperature conditions along
the tube length. We use a Finite-Volume approach to solve continuity, momentum, and energy equations to account for
non-isothermal-non-Newtonian conditions. Different plug-flow profiles are obtained along the pipeline and the pressure
conditions for the re-start of the flow is determined. The problem is solved into two stages: the first where the temperature
field is solved for zero-velocity conditions, and the second where the re-start flow is solved from that initial conditions.
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1. INTRODUCTION

Reservoirs located in deep and ultra-deep water are becoming a more attractive source of oil, since they are located at
less explored regions. Generally, the oil that is found in these locations is classified as a waxy crude oil. Waxy crude oil
systems are very complex in nature presenting a variety of substances like saturates, aromatics, naphthenes, asphaltenes,
and resins. At high temperatures, all these substances are dissolved and the rheological properties of the material are those
of a Newtonian fluid. When these waxy crude oils are cooled down, below the so-called Wax Appearance Temperature
(WAT), which is defined in purely thermodynamic basis, it starts the formation of the first crystals. At this stage, the
rheological properties do not change significantly. However, when the oil is subjected to even lower temperature, the
Gelation Temperature (GT) is achieved and a gel-structure is formed. This gel-like structure is responsible for a consid-
erable change on the rheological material properties and the appearance of an yield stress is a remarkable new character
of these kind of materials at low temperatures. Not only the viscosity, but also the yield stress is temperature dependent
(Visitin et al., 2005). The higher is the wax concentration in the oil, higher is the increase in the yield stress value for the
same decrease of temperature, below the GT(Oh and Deo, 2009).

The typical temperature in ultra deep water environment is 4oC. The oil inside the reservoir is at a much higher
temperature, something around 60oC. Therefore, the heat flux from the flowing material to the environment can be
significant and is responsible for cooling the oil inside the duct. This process causes the formation and precipitation of
the paraffins that compose the oil. The deposition of such paraffins on the walls of the duct can provoke significant losses
in production and understanding the mechanism of formation, precipitation, and deposition of paraffins is essential to
control the damage that can occur (Azevedo and Teixeira, 2003). A more unfavorable scenario is achieved when there is
a shut down on the pumping process. In this case, the stagnant oil is cooled below the GT causing the formation of the
gelled structure in a long portion of the duct, which obstructs the passage of the non-gelled oil near the reservoir.

The re-start problem is a set of strategies that are needed in order return to the normal operational conditions. The
new rheological character of the material confers non-Newtonian properties to the waxy crude oil in this gelled state.
One of the main new features is the presence of a yield stress, i.e. a viscoplastic property that constitutes a threshold the
imposed stress must overcome in order to initiate flow. Therefore, the re-start pressure has to be much higher than the
pressure necessary to maintain normal production conditions, since the re-start pressure must cause a stress at the wall
that overcomes the yield stress and provoke a breaking up of the gel structure.

The rheological material properties are highly dependent on temperature, therefore the temperature field determines
the viscosity and yield stress distribution inside the domain. Since we are interested on the transient response of the
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material, starting from a no-flow situation, the initial temperature field is essential for a fair representation of the problem.
Besides that, it is incumbent upon us to represent faithfully the temperature dependency of the material properties. As far
as the material remains in the Newtonian range, the Arrhenius equation is a suitable choice for representing the viscosity
as a function of the temperature. For the non-Newtonian state the Arrhenius equation is not capable to give a reasonable
description and a VFTH (Vogel–Fulcher–Tammann-Hesse) model is generally used for a better representation.

The objective of the present work is to numerically simulate the viscoplastic re-start flow problem of a waxy crude
oil whose rheological parameters are dependent on temperature. To this end we use the open source code OpenFoam
to simulate the balances of mass, momentum, and energy. The material is modeled as a Bingham material. The initial
temperature field is obtained from the steady-state solution of the balance of energy when there is no flow.

2. PROBLEM FORMULATION

2.1 Governing equations

The governing equations are given by the mass, momentum, and energy balances of an incompressible non-Newtonian
material given, respectively by

∇ · v = 0 (1)

ρ
Dv

Dt
= ∇ ·T (2)

ρcP
DT

Dt
= −∇ · q+T : D (3)

where v, T, and T are the velocity, Cauchy stress, and temperature fields, respectively. D is the symmetric part of the
velocity gradient and q is the heat flux. The quantity ρcP represents the heat capacity per unit volume of the material.

2.2 Material constitutive model

The constitutive model for the waxy crude oil considered here is based on a temperature dependent Hershel-Buckley
model, but with an viscosity plateau at high shear rates, η∞. The temperature dependency of this material should reflect
an Arrhenius dependency above the WAT. Besides that, below the WAT, the non-Newtonian features such as yield stress
and shear-thinning behavior should come into play and have a non-Arrhenius type of temperature dependency. We use
as a non-Arrhenius temperature model, the VFTH equation. Hence, we are assuming that the material has the following
constitutive equation

τ = τy(T ) +m(T )γ̇n(T ) + η∞(T )γ̇ (4)

where τy(T ),m(T ), n(T ) and η∞(T ) are the yield stress, the consistency index, the power-law index, and the viscosity at
high shear rates, respectively. In principle, all these parameters are temperature-dependent. However, In the present work,
we do not consider the power-law index to be temperature dependent. For the quantity η∞(T ) an Arrhenius function was
assumed, i.e.

η∞(T ) = ηrefexp

[
Sη

(
1

T
− 1

Tref

)]
(5)

where ηref is a reference viscosity, in this case the viscosity at Tref = 60oC. For the non-Newtonian parameters we have
the following functions with respect to temperature.

τy(T ) = τymax

{
exp

[
Sτy

(
1

T
− 1

WAT

)]
− 1, 0

}
(6)

and

m(T ) = mmax

{
exp

[
Sm

(
1

T
− 1

WAT

)]
− 1, 0

}
, (7)

where the function max{A,B} returns the maximum value between A and B. We consider a Generalized Newtonian
Fluid where the stress tensor, T, is given by

T = −p1+ τ = −p1+ 2ηD (8)

where η is the viscosity given by

η =
τ

γ̇
, (9)
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Figure 1. Different flow curves parametrized by temperature.

where τ is given by Eq. (4) and the deformation rate is defined γ̇ =
√
0.5tr(2D)2. Figure 1 shows the qualitative behavior

of this family of curves parametrized by temperature.
For the heat flux we assume a simple Fourier material, i.e.

q = −k(T )∇T, (10)

where k is the thermal conductivity.

2.3 Initial and boundary conditions

The re-start problem is transient in nature. Hence, good estimates for the initial conditions are essential for the
representation of the real problem. In this sense, we firstly solve the temperature field, T , corresponding to the shut down
conditions, i.e. no flow. In this case, the first law o thermodynamics can be written as

ρcp
∂T

∂t
= ∇ · k∇T, (11)

where ρ is the mass density, cp is the heat capacity, and k is the thermal conductivity of the material. The boundary
conditions are meant to reflect, as close as possible, the real problem. The temperature at the entrance of the tube, near
the reservoir, is considered uniform and at the reservoir temperature. At the walls, we consider a heat flux proportional to
the difference between the wall temperature and the environmental temperature:

q′′ = h (Tw − T∞) , (12)

where h is a bulk parameter that depends on the environmental conditions. When there is no flow outside the tube, h is a
function of the water thermal conductivity. When there is flow, h plays the role of a film coefficient.

Finally, at the end of the tube we consider a fully developed condition of the form

n · ∇T = 0. (13)

The steady state solution of this problem results in the temperature field that constitutes the initial conditions of the
re-start problem. The importance of this first stage of the problem cannot be overemphasized, since the temperature initial
distribution determines the initial distribution of the rheological parameters of the material and, hence, are fundamental
for the conditions associated to the re-establishment of the flow.

2.4 Dimensionless numbers

A dimensional analysis of the governing equations, boundary conditions, and constitutive equations lead to the fol-
lowing dimensionless numbers

N1 =
hD

k
, (14)
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which is equivalent to a Nusselt number.

N2 =
ρcPVcD

k
, (15)

which is equivalent to Peclet number. Where Vc is a characteristic velocity that is related to the pressure drop as Vc =√
2
ρ

∆p
L D. The dimensionless quantities associated to the material are given by

τ ′y =
τy(Tc)

τy(Tc) +m(Tc)γ̇nc
, (16)

where Tc is a characteristic temperature.

2.5 Numerical formulation

The scheme of the problem to be solved is shown in Fig. 2. The oil enters at the tube with the reservoir temperature,
TR = 60oC !
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Figure 2. Scheme of the problem.

The computational domain to be considered here spans R = 0.05m in the radial direction, and L = 1m in the axial
direction. The mesh consists of 80× 200× 1 uniform subdivisions in the radial, axial and azimuthal direction, providing
the necessary basis for the discretization of the equations.

The mass, momentum, and energy equations were discretized using the Finite Volume Method (FVM) implemented
in OpenFOAM (OpenFOAM; Weller et al., 1998). The field values are stored at the control volume centroids. Whenever
fluxes or other face quantities are needed, the centroid values are interpolated to the faces centroids, using the most ap-
propriate scheme. Here, a Total Variation Diminishing (TVD) scheme based on Minmod limiter is employed to guarantee
a bounded behavior when high frequency oscillations are eminent, yet an accurate discretization for smoother modes.

The discretization of these equations generates three sets of linear systems, corresponding to the mass, momentum,
and energy equations, which are solved separately, in a segregated approach. During a time step of the transient evolution,
the momentum is solved first, then the pressure is found to correct the mass conservation, and lastly the energy is solved
to find the temperature, based on the velocity found in the other two steps. Numerical experiments suggested that the
temperature-velocity coupling inside a single time step is far less important than the velocity-pressure coupling. Therefore,
an inner loop coupling is performed only for the velocity and pressure fields, using the PISO methodology (Issa, 1986).

3. Results

Starting with a no-flow condition, with a zero pressure gradient and a steady state temperature field given by a pure
diffusion equation, an inlet pressure ramp is imposed. This ramp is clipped at a maximum value of P1 = 10Pa, or, in
non-dimensioned units, P ∗1 = P1D/4τyL = 357.14. In Fig. 3(a) the time evolution of this inlet condition is shown
as a dimensionless pressure gradient, given by ∇P ∗ = −∇PD/4τyL = P1D/4τyL

2. The yield stress τy is the one
corresponding to the cold environment temperature of 4oC, and its value is τy(4oC) = 710−4Pa. The time is also
non-dimensionalized by a characteristic time, according to t∗ = t

√
τy/ρ/L. For each time and pressure gradient, the

non-dimensional maximum velocity over the whole domain (U∗ = Umax/
√
τy/ρ) is plotted on the same figure, on the

left vertical axes. Figure 3(a) presents the same information, but for a close up around the restart of the flow.
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Figure 3. Evolution of the max flow velocity and imposed pressure gradient in time.

One can notice that the maximum velocity linearly follows the pressure gradient trend for most of the simulation.
However, near the flow restart corresponding to t∗ = 0.075, an increase in pressure is not able to move the fluid due to
the yield stress for the given temperature. It is interesting to observe that the fluid takes a short time (from t∗ = 0.075 to
t∗ = 0.1) to go from the no-flow condition to the linear behavior, in which the maximum velocity is proportional to the
pressure gradient ramp.
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Figure 4. Dependence of the max flow velocity on the imposed pressure gradient.

Figure 4(a) shows the relation between the imposed pressure and the maximum fluid velocity, while Fig. 4(b) shows
the same information for a shorter interval. Again, one can see that the linear trend in the fluid movement is not readily
established once the pressure reaches a minimum condition for the flow. Instead, it only starts when the pressure gradient
is higher then ∇P ∗ = 25. It remains to be seen whether this is purely related to the dependence of Umax on ∇P , or if
it has anything to do with a time delay, possibly due to a change in the temperature once the hot fluid invades the duct,
affecting greater regions. If the later is actually the case, one could expect to be able to maintain the flow even with a
drop in the pressure gradient to ∇P ∗ = 15, as long as the previous condition consisted of a flowing fluid. Notice that
according to the graph in Fig. 4(a), this pressure gradient would not be able to restart the flow, and the ramp would need
to keep rising the pressure.

In order to check the causes of this behavior, a further simulation was ran (Fig. 5), in which the pressure was changed
to gradually smaller values (P1 = 1.8, 0.6, 0.4) in steps, beginning from a established flow condition – the same found in
the end of the ramp simulation. For each of these pressure steps, enough time was simulated in order to allow reaching
steady state before changing to the next pressure value. This can be verified by looking at the quick exponential decay of
velocity after each change in pressure, in the same Fig. 5.

The dependence of Umax on∇P for this stepped pressure simulation is plotted with cross symbols (“×”) in Fig. 4(b),
in order to be readily compared to the former restart ramp simulation. It is clear that during this latter simulation there
is a fluid flow, even for the lower pressure values, the same of which could not restart the flow in the ramp following a
no-flow initial condition. The reason for this can be easily understood by observing that, for the new initial flow condition,
the high temperatures of the inlet region have stronger influence in the domain interior. Thus, the temperatures inside the
tube tend to be higher, with a lower yield stress. Also of interest is the observation that this stepwise decrease in pressure
promoted a linear decrease trend in the maximum velocity. This suggests that a possible strategy to the restart problem
would be to impose a higher pressure in the beginning to guarantee a faster hot fluid entrance in the tube, followed by a
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Figure 5. Evolution of the max flow velocity and imposed pressure gradient in time for the piecewise stepped pressure
evolution.

lower pressure just enough to maintain the flow, taking advantage of the smaller yield stresses involved due to the higher
temperatures.

Figure 6 presents the profiles of temperature and yield stresses for different axial positions along the pipe, for the
last step of pressure, in steady state. The dimensionless temperature is given by θ = (T − T∞)/(T1 − T∞), while the
dimensionless yield stress is given by τ∗y = τy/τyc . Here, τy = τy(T ) is the yield stress for the local temperature, while
τyc is the yield stress for the cold temperature of reference, T∞ = 4oC.
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Figure 6. Profiles of temperature and corresponding yielding stress.

One can see that in both Figs. 6(a) and 6(b) the profiles are already well developed and totally dominated by the
environment temperature (T∞, with θ = 0) at a quarter of the total length, or at five radii (5R). At the inlet and its
vicinity, the temperatures are higher and closer to the hot oil (θ = 1), and consequently the yield stresses are reduced.

Figure 7 compares two sets of profiles for the same pressure gradient (∇P ∗ = 64.28). However, one of these sets
(Fig. 7(a)) is taken during the transient increasing pressure ramp (starting from a no-flow condition), while the other (Fig.
7(b)) is taken in the steady state reached with a fixed pressure after the restart. No appreciable difference is noted between
these two situations, meaning the ramp is slow enough to allow a quasi steady state at each pressure value, at least for this
high pressure value.

The next two figures (Fig. 8(a) and 8(b)) present the profiles at the same locations for the other two steady states con-
ditions, reached by the application of the decreasing stepwise pressure, following a previously established flow condition.
One can observe the onset of the plug flow, which is bigger for the smaller pressure gradient, as it competes in magnitude
with the yield stress.

4. FINAL REMARKS

We developed a procedure to solve the non-isothermal flow of waxy crude oil in pipeline in the re-start conditions,
i.e. when there is a interruption of the normal conditions and the oil is subjected to low temperature environment condi-
tions. In this case, the oil exhibit non-Newtonian features with rheological parameters that are dependent on temperature.
The transient solution is obtained via a Finite Volume formulation implemented in OpenFoam. The preliminary results
obtained were very satisfactory, qualitatively with the expected trends.

A ramp in the pressure drop provided information about the minimum value necessary to overcome the resistance
imposed by the yield stress. There is a clear value, below which the material does not move.
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Figure 7. Velocity profiles for∇P ∗ = 64.28.
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Figure 8. Velocity profiles for steady state solution.

The velocity profile is more parabolic at the positions of higher temperature, where the material is predominantly
Newtonian, and present a plug flow at regions where the temperature is lower, and the fluid acquires more viscoplastic
features.
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