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Abstract: This paper presents the input-state linearization of a vehicle type MAGLEV (magnetic levitation transport), 

by using standard Lie derivatives techniques, based in the simplified nonlinear model. Necessary and sufficient 

conditions for controllability are presented and furthermore, the analytic form of the controller ´u´ so that the 

nonlinear system dynamics is transformed into an equivalent linear time-invariant dynamics was exhibited. More 

specifically we find a diffeomorphism and a nonlinear feedback control law 'u' such that the new state variables and 

the new input satisfy a linear time-invariant dynamics. 
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1. INTRODUCTION  

 
The feedback exact linearization is a design methodology of nonlinear systems. This procedure allows changing the 

dynamics of a nonlinear system, in a linear dynamics one through a previously nonlinear state feedback or nonlinear 
output chosen. 

With this in mind, it is almost always necessary to make a state variable change, and more, to be introducing a 
variable auxiliary input (Slotine, 1991; Isidori, 1995). 

This methodology has been the subject of research for many researchers in recent years. This procedure has been 
used successfully in a wide range of applications, such as tracking problems in control robotic arms and manipulators, 
artillery, helicopters, airplanes and satellites, as well as being used in medical apparatus and in the chemistry and 
pharmaceutics (Alvarez-Gallegos, 1994; Barbanti, 2012; Chem, 1998, 2000, 1999; Isidori, 1995; Reis, 2012-a, 2012-b; 
Silva, 2003; Slotine, 1991; Ray, 2012; Yabuno 2004, 1991, 2003, 1989). 

In the input-state feedback, we consider a nonlinear system of the type u)x(g)x(fx  , with f (x) and g (x) being 

smooth fields in 
n
.The problem is to designing a control input u aiming to transform the nonlinear dynamics or part 

this, in a linear dynamics takes place in two steps: first we show the existence of a diffeomorphism  (x) defined in a 

region   of 
n

 and  a nonlinear control law bAzz  , in such a way that the new state variable z =  (x) and the 
new entry   satisfy both  a linear  time invariant relation, bAzz   with constant matrices A and b. After, we use 
the standard   projection.  

This procedure is justified since the Taylor series linearization has a local character, that is, it is true only for a 
region around a point, while the feedback linearization is global, i.e., applied to the whole state or output spaces, with 
the possible exception on isolated points. Moreover, while the linearization due to the analysis of the Jacobian is 
approximate by the feedback linearization it is exact (Isidori, 1995, Silva, 2003; Slotine, 1991). 

In this work we present the input-state linearization of a vehicle type MAGLEV (magnetic levitation transport). The 
MAGLEV is a new technology for mass transport, which employs magnetic fields to levitate and propel direct high-
speed trains, adding safety, low environmental impact and minimal maintenance costs. Hence the interest in to be 
considering the task  in countries like Brazil, Germany, Japan, China, United States, Australia, Thailand, etc ...  

Here we consider a simplified nonlinear model of such a system described in the state space obtained by Yabuno 
(2004), (1989), with scalar functions as output. Necessary and sufficient conditions for controllability will be presented, 
and in addition, the analytical form of the controller u and the ultimate form of the linearized dynamics are displayed 
too.  

This paper is organized as follows. Section 2 presents a simplified mathematical model of the vehicle MAGLEV 
beyond the theoretical conditions for the realization of input-state linearization. Section 3 presents the input-state 
linearization, including the construction of the diffeomorphism, and the necessary and sufficient conditions for the 
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application and the new nonlinear dynamics in the new state variables introduced. In section 4 we will do the 
conclusions of the work and in section 6 the references. 

 
2. SIMPLIFIED MODEL FOR THE MAGLEV VEHICLE 

 
Here we consider a simplified model of a vehicle MAGLEV type as in Fig. 1, obtained by Yabuno (2004). 0 is the 

origin of the Cartesian plane and we suppose that the levitated body moves freely only in the direction z. Furthermore, 
zd measures the vertical displacement, m1 is the mass of the main body, zst is the distance between the magnets, Zb1 is the 
amplitude of excitation of the magnet base,  is the excitation frequency of the magnet base, z is the natural frequency 
of the body zb is the vertical displacement of the basis of the magnet and t*

 = t z and ,zzz std
*   respectively are 

dimensionless variables, z  and  = zb1/zst are parameters, as Yabuno (2004), (1989). 
                                                                                
 Z main system 
 
 
  
 X zd magnet 
 
 
 
 Zst + zd 

 
 

                         zb = zb1cost magnet basis 
 

Figura 1: Modelo do corpo de levitação magnética (Yabuno, 2004). 
 

Here we consider  the repulsive magnetic force among the nonlinear magnets for small variations and finite distance 
zst can be approximated by a polynomial with cubic and quadratic terms in which the basis is excited with vertical 
displacement zb = zb1cost as Yabuno (1989). Considering the point as the derivative with respect to the time, the 
following nondimensional equation is found (Yabuno 2004): 

 
3*

zzz
2*

zz
**

zz
**

z
** zzvtcosz2vtcoszzz                                                                (1) 

 

where *
z z is viscosity linear force acting on the main system zz and zzz are the coefficients of z

2 and z
3 in the 

Taylor series  of the magnetic force (Yabuno, 1989). 
If we reorganize the Eq. (1) we get: 
 

.vtcos)z21(zzzz z **
zz

*
zzz

2*
zz

*
z

** 3
                                                     (2) 

 
Defining x = (x1, x2, x3) as the state vector we have: 

 
*

1 z x   and *
3 tx  .                                                                                                                                                 (3) 

 
In this way the Eq. (2) can be transformed into the nonlinear system: 
 

)x(fx  ,                                                                                                                                                                     (4) 
 
where f(x) is a smooth field in 3 done by 
 

,

z 

)x(

2x 

)x(f





















                                                                                                                                                                (5) 
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.vxcos)x21(xxxx )x( 31zz
3
1zzz

2
1zz2z1                                                                           (5 – a) 

 
Aiming the input-state linearization for the MAGLEV vehicle, we make the following considerations: 
(a) y = h(x) = x1 is the output, 

(b) u(t)  the system input,                                                                                                                                          (6) 

(c)  g(x) is the  smooth field 




















0

0

)x(g , with   0 take as a real number. 

Upon considerations (5) and (6), the Eq. (2) and (4) can be written as: 
 

1x)x(hy

u)x(g)x(fx



                                                                                                                                                           (7) 

 
where f and g are smooth vector fields in 3 and h(x) is a scalar function representing the output of the nonlinear 
system. 

According Slotine (1991) and Isidori (1995), a dynamic represented in the form of state equations as in Eq. 
(7),where  f and g are smooth vector fields on 3, it is  input-state linearizable if there exists  a region  in n, and a 
diffeomorphism n:  and a feedback control nonlinear law  )x()x(u  such that the new state z =  (x) 
and the new entry satisfy a linear time-invariant having the form bAzz  where A and b are constant matrices 
expressed in the  companion form. 

The question that arises at this point is: all the nonlinear dynamics in the form (7) can be linearized by means of a 
nonlinear state feedback? 

It is known in the literature (Slotine, 1991; Isidori, 1995), that the nonlinear dynamics given by Eq. (7) is input-state 
linearizable if and only if: 

1. The fields  g1n
f

ad,...gfad ,g 
 
are linear independent;                                                                                      (8) 

2. The set  g1n
f

ad,...gfad ,g   is involutive in the region  of the n;                                                                 (9)  

where   )x(gad,f)x(gad 1n
f

n
f

 , ggad o
f

  and  g ,fgad f   is the Lie bracket respect to the fields f and g. 

In this way, under the conditions (8) and (9), the following steps for the application of this technique can be adopted 
(Slotine, 1991; Isidori, 1995): 

1. Give the fields  g1n
f

ad,...gfad ,g  ;                                                                                                                 (10) 

2. Check where  the conditions regarding the  controllability and the involutiviness  are  being true;                 (11) 
3. After the second step give the first state variable z1 in the equations:     
                                                                  

0gad.z

2-n ..., 1, 0, i       0gad.z

1n
f1

i
f1







;                                                                                                                            (12) 

 
4. Define the diffeomorphism  (x) and a nonlinear  control feedback law  )x()x(u  with: 

 

   , zL  ...   zL   z)x(z
T

1
1n

f1f1


 
   

1
1n

fg

1
n
f

zLL

zL
)x(


  and  .

zLL

1
)x(

1
1n

fg


                                               (13) 

 
In Eq. (13), 1

1n
f zL   is the Lie derivative of the scalar function z1 with respect to the vector field f. 

In the next section, this procedure will be used for non-linear dynamics given by Eq. (7) representing the MAGLEV 
vehicle. 

 
3. THE INPUT-STATE LINEARIZATION FOR THE MAGLEV VEHICLE 

 
According to Eq. (10), for the construction of fields  gad ,gad,g 2

ff , we have for i = 2 that: 
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  gadj.ff.gadj)x(gadj,f)x(g2
f

adj 1
f

1
f

1
f   

 
where f  is the gradient of the field f. Further, from Eq. (5) and (6) it follows that: 
 

 0g   and  


















 0                                0                                                0                         

senvxx21-          -       vxcos2x3x21 

0                                 1                                                0                          

f 31zzz3zz
2
1zzz1zz  . 

 
In this way, we get 
 

 


















0                    

senvxx21

0                     

gadj 31zzf  .                                                                                                                     (14) 

 
But 
 

 


















 0                            0                     0            

vxcosx21         0        senvxx 2

0                           0                      0             

gad 31zz
2

32zzf  , 

and then: 
 
 

 

  






















 0                                                             

xsenvxcosx21senvxx 2

                   senvxx21-                                           

gadj 3z31zz32zz

31zz

2
f





.                                          (15) 

In this way, from the Eq. (6), (14) and (15) the first step to be having the input-state linearization for the MAGLEV 
system is concluded. 

To check the conditions for have controllability and involutiveness, we must initially search for conditions for have  
 gad..., ,gad,g 2

ff  
to be linearly independent. This means that the determinant of the controllability matrix has to be 

different from 0, that is: 
 

0gad,gad,g 2
ff  .                                                                                                                                              (16) 

 

But 
 

 

gad,gad,g 2
ff   = 

 

 

  

0                                                        0                    

xsenvxcosx21                                             

senvxx 2   senvxx21     0

 senvxx21-                             0                    0

3z31zz

32zz31zz

31zz















 

 

=    3
22

1zz
223 vxsenx21   .                                                                                                                 (17) 

 
Then  
 

0gad,gad,g 2
ff      0x21

2
1zz    or   0vxsen 3

2   
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  
zz

1
2

1
x


  or .... 2, 1, 0,  k   ,

k
x3  

  
 

In this way we have 
 

zz
1

2

1
x


        or         .... 2, 1, 0,  k   ,

k
x3  


                                                                                         (18) 

 

and the fields  gad ,gad,g 2
ff  

are linearly independent. In such manner then along with the restriction (18) the 
controllability condition is true.  

In order to check the involutivity, one has to prove that: 
 

  .0gad,ggadg ff                                                                                                                                                 (19) 

 
But 

 

         gad,ggad0 ff    

0                                                        0                    

 vxcosx21-  senvxx21     0

                             0                    0

31zz
22

31zz



   = 0.                                       (20) 

 
In this way,

 
 gad,g f  are involutive. 

Thus, from Eq. (20) it follows that the fields  g1n
f

ad,...gfad ,g   are involutive and from Eq. (18), the 

controllability conditions are true if and only if: 
 

 
zz

1
2

1
x


       or        .... 2, 1, 0,  k   ,

k
x3  


                                                                                 (21) 

 
Because the steps 1. and 2. are satisfied, according the Frobenius theorem (Slotine, 1991), there is a scalar function 

z1 (x) (the output function leading to the  input-output linearization of degree 3)  that can be derived from the equations: 
 

0gad.z

2-n ..., 1, 0, i       0gad.z

1n
f1

i
f1






;                                                                                                                                 (22) 

 
Cause n = 3, we have that the Eq. (22) are in the form: 
 

;0gad.z

;0gad.z

;0g.zgad.z

2
f1

1
f1

1
o
f1







                                                                                                                                               (23) 

 
But from the controllability matrix, we get the following partial Eq. (23): 
 

  

       0
x

z
xsenvxcosx21senvxx 2

x

z
 senvxx21-

0
x

z
senvxx21

0
x

z

2

1
3z31zz32zz

1

1
31zz

2

1
31zz

3

1





























 .                  (24) 
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  From Eq. (6) and (21), we have that both,   0 and    31zz senvxx21    0, and therefore, from Eq. (24) we 
can conclude that: 

 

0
x

z
 

0
x

z

0
x

z

1

1

2

1

3

1
















.                                                                                                                                                                     (25)  

 
Hence, from Eq. (25) we have z1 = h(x) = x1 being a function that leads to the degree r = 3. Different states can be 

obtained z1. In fact, 
 

z2 = Lfz1 = (1 0 0)

 

2x

z 

)x(

2x 




















 ;                                                                                                                                  (26) 

 

z3 = Lf Lfz1 = (0 1 0)

 

).x(

z 

)x(

2x 





 
















 

 
From Eq. (26) we see that the state transform is of the form: 

     T21
T

321
T

1
2
f1f1 (x)  x  xz  z  z zL   zL   z)x(z)x(                                                                  (27) 

 
Note that from Eq. (5a) and (18) we have that   (x) = z (x) is a diffeomorphism because 
 

 

  0senvxx21v-

       senvxx21v-                              0                0

                                               1                0

vxcos2x3x21                0                 1

31zz

31zz

z

3zz
2
1zzz1zzz









 







 . 

 
As a consequence of the Eq. (27) we have that   (x) is not a global diffeomorphism, because according to the Eq. 

(18), 
zz

1
2

1
x


 or ,

k
x3 


   ... 2, 1, 0,  k  . Now, from (27) we conclude : 

221 zxz                                                                                                                                                                (28) 
 

322 z)x(xz                                                                                                                                                      (29) 

 

331zz31zz1
2
1zzz11zz2z13 xsenvx)x21(vxcosx2xx3xx2xx )x(z     

                              

 uwsenvx)x21(vxcosx2 xx3xx2)x(x z31zz32zz2
2
1zzz21zzz2    

                                

 .uwsenvx)z21(vxcosz2zz3zz2)x(z z31zz32zz2
2
1zzz21zzz2    

 
Hence 

u)x(b)x(az3  ,                                                                                                                                              (30) 
 
with 
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,senvx)x21(w                                                                                      

vxcosx2 xx3xx2)x(x )x(a

31zzz

32zz2
2
1zzz21zzz2








                          (30-a) 

 
31zz senvx)z21()x(b   .                                                                                                                    (30-b) 

 
From Eq. (28) - (30-b) we have the nonlinear dynamics can be transformed into the (non-linear dynamics) 
 







































u)x(b)x(a

z      

z      

z

z

z

z 3

2

3

2

1







                                                                                                                                         (31) 

with a(x) and b(x) the same as in Eq. (30-a) and (30-b). By considering the nonlinear dynamics given by Eq. (27) with 
the control law  )x()x(u  , and if 
 

1
2
fg

1
3
f

zLL

zL
)x(       and     

1
2
fg zLL

1
)x(  ,                                                                                                    (32) 

 
the linearized system is obtained: 
 





















3

2

z

z

z .                                                                                                                                                                   (33) 

In fact, from Eq. (5-a) then: 
 

.vxcos)x21(xxxx )x( 31zz
3
1zzz

2
1zz2z1    

Now: 
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g

f

1
2
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1
2
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1
2
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1
3
f




                                                                                                      (34) 

 
But: 
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2
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


.                                             (35) 
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1zzz1zzg  

        (36)
 

 
So, from Eq. (35) and (36) we have: 
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 

 
.
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senvxx21  w                                                            
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                                               (37) 

 
We have:                     
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In this manner: 
 

 
.

senvxx21

1
)x(

31zz



                                                                                                                           (38)  

 
Therefore, with the state transformation (27) and the input transformation  )x()x(u   given by Eq. (37) 

and (38), the problem of stabilizing the nonlinear dynamics (7) by using the original control input u, was transformed 
into the problem of stabilizing the new dynamics given by Eq. (31), with input . 

It is noteworthy that the use of linear techniques could be used to design the input control . For example, the 
technique of imposing poles can be used. Thus, the stability of the closed-loop dynamics can be analyzed. For this 
purpose, the linear feedback control law: 

 
332211 zzz                                                                                                                                                (39) 

 
can arbitrarily assign the poles of system given by Eq. (33) (Chen, 1998; Slotine, 1991; Isidore, 1995). 

Substituting Eq. (37), (38) and (39) into equation  )x()x(u   gives the nonlinear feedback control law: 
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   ].xsenvxx21w                            
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













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                (40)
 

 
How future goals we wish to introduce numerical examples control beyond the study of asymptotic stability of 
nonlinear dynamics. 

Notice that despite the result to be true in a wide region of the state space, the result is not global since the control 

law is not defined when
zz

1
2

1
x


  or ,

k
x3 


   ... 2, 1, 0,  k  . 

 
 

4. CONCLUSION 

 
In this work we performed the input-state linearization of a MAGLEV vehicle, in which it was considered a 

simplified nonlinear model obtained by Yabuno (2004). 
Necessary and sufficient conditions for controllability were obtained, in Eq. (21) and depending on such conditions, 

we determined the diffeomorphism and a new set of states generating a nonlinear dynamics given by Eq. (31). From this 
equation it  was determined a control law of the form given by Eq. (37) and (38) which transform  the nonlinear 
dynamics (31) in a dynamic linear, in the Eq. (33). Thus, with the diffeomorphism given by Eq. (27) and the input 
transformation  )x()x(u   given by Eq. (37) and (38), the problem of to be stabilizing the nonlinear dynamics 
(7) by using the original control input u, was transformed into problem in to be stabilizing the new dynamics given by 
Eq. (31), with input  . 

It has been proved that the result obtained is not global, even though being valid in a wide region of state space, 

since the control law is not well defined when
zz

1
2

1
x


  or ,

k
x3 


   ... 2, 1, 0,  k  . 

We want to be mentioning that the use of linear techniques can be applied to design the input control. For example, 
the technique of imposing poles could be used. In this way, the stability of the closed-loop dynamics could be analyzed. 

 
5. ACKNOWLEDGEMENTS 

 
The author thanks the support of the FUNDUNESP, FAPESP and CNPq. 
 

6. REFERENCES 

 
Alvarez-Gallegos, J. (1994). Nonlinear Regulation of a Lorenz System by Feedback Linearization Techniques, 

Dynamics and Control, 4, pp. 277-298. 
Barbanti, L. (2012). Hartman-Grobman Decomposition When in Presence of Jumps in the Relative Degree of the 

Dynamics in an Energy Harvesting Device In: 9th International conference Problems in Engineering, Aerospace and 
Sciences, 2012. American Institute of Phisics p.84 - 87. 

ISSN 2176-5480

3072



22nd International Congress of Mechanical Engineering (COBEM 2013) 
November 3-7, 2013, Ribeirão Preto, SP, Brazil 

Chem Liqun, Yanzhu, L. (1998). Control of the Lorenz Chaos by the Exact Linearization, Applied Mathematics and 

Mechanics, 19, pp. 67-73. 
Chem Liqun (2000). Controlling Chaotic Oscillations With Input-Output Linearization, Journal of Shanghai University, 

4. pp. 175-178. 
Chem Liqun, Yanzhu, L. (1999). A Modified Exact Linearization Control for Chaotic Oscillators, Nonlinear Dynamics, 

20. pp. 309-317.  
Isidore, A. Nonlinear Control Systems, 3ed., Springer-Verlag, Roma, 1995. 
Silva, G. V. M. Controlo Não Linear, Escola Superior de Tecnologia Setúbal, Lisboa, 2003. 
Slotine, J.; LI, W.. Applied Nonlinear Control. New Jersey: Prentice Hall, 1991.  
Ray, A., Chowdhury, A. R. (2012). Nonlinear Control of Hiperchaotic System, Lie Derivative and State Space 

Linearization, J. Comput. Nonlinear Dynamics, 7. 
Reis, C. A et al., (2012-a) A Análise da Dinâmica Interna de Um Trem Maglev In: VIII Congresso Nacional de 

Engenharia Mecânica, 2012, São Luiz.  Anais do VIII Congresso Nacional de Engenharia Mecânica. 
Reis, C. A. et al., (2012-b) A Linearização Entrada-Saída de um Veículo MAGLEV. In: CNMAC 2012: 34º Congresso 

Nacional de Matemática Aplicada e Computacional, Águas de Lindoía, S. P., 2012, Anais do 34O Congresso 
Nacional de Matemática aplicada e Computacional, SBMAC, São Carlos.  

Yabuno, H., Kanda, R., Lacarbonara, W., Aoshima, N., (2004). nonlinear Active Cancellation of the Parametric 
Resonance in a Magnetically Levitated Body, Jounal of Dynamics system, Measurement and Control, 126, pp. 433-
442.  

Yabuno, H., Fujimoto, N., Yoshizawa, M., and Tsujioka, Y. (1991). Bouncing and Pitching Oscillations of 
Magnetically Levitated Body due to the Guideway Roughness, JSME International Journal, 34(2), pp. 192–199. 

 
 Yabuno, H., Murakami, T., Kawazoe, J., and Aoshima, N. (2003). Suppression of Parametric Resonance in Cantilever 

Beam with a Pendulum Effect of Static Friction at the Supporting Point of the Pendulum, Trans. ASME Journal of 

Vibration and Acoustics, 126, pp. 149-162. 
Yabuno, H., Seino, T., Yoshizawa, M., and Tsujioka, Y. (1989). Dynamical Behavior of a Levitated Body with 

Magnetic Guides (Parametric Excitation of the Subharmonic Type Due to the Vertical Motion of Levitated Body),  
JSME International Journal, 32(3), pp. 428–435. 

 
7. RESPONSIBILITY NOTICE 

 
The authors are the only responsible for the printed material included in this paper. 

ISSN 2176-5480

3073




