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Abstract. In this work, an inverse problem of damage identification and localization in a structure is solved by a global 
optimization technique using genetic algorithms. The inverse problem is modeled as single and robust optimization 
problems. The damage is characterized by a hole in the structure, which modifies existing temperature and stress 
fields. The inverse problem is initially modeled as a mono-objective problem, where a functional formulation is 
minimized. After, the inverse problem is modeled as a robust optimization problem (multiobjective problem) where the 
optimum value and small variations around this optimum value are considered. Considering the multiobjective 
problem, two techniques are used to solve the damage detection problem. The first technique converts the 
Multiobjective Optimization Problem to a simple optimization problem through Weighting Objectives Method, and the 
second one uses a multiobjective genetic algorithm to obtain multiple solutions and a decision making method based 
on fuzzy theory to find the better tradeoff solution for the problem. Boundary element method is utilized to obtain the 
distribution of stress to elastostatic problem. 
 
Keywords: Damage detection; multiobjective optimization; multicriteria decision making; genetic algorithm; boundary 
element method. 

 
1. INTRODUCTION 
 

Several types of static and dynamic loads and the structural deterioration process can cause different types of 
structural damage. The damage can be characterized by a change in the structure, such as the presence of holes and 
cracks. The knowledge of the change in the material properties corresponding to the damage depends on the type of 
material and on the structural configuration. The proper assessment of the damage in a structure can be useful to infer 
its remaining service life. 

The damage detection problem can be considered as a problem of system identification or an inverse problem. If 
considering an inverse problem of damage detection, this problem can be modeling through a direct problem, an inverse 
problem and uncertainty modeling. For the direct problem, a model is required to obtain information on the distribution 
of the quantity of interest throughout the structure, given the boundary conditions and the presence of the damage. For 
the inverse problem, a model is required for a procedure of locating damage in the structure given some (partial) 
information on the quantity of interest at some particular locations (for example, where some sensors are placed). 
Moreover, both direct and inverse problems are stochastic, therefore some kind of treatment of randomization needed to 
be performed at variables of the problems. Uncertainties are present in modeling of the plate structure under study, at 
damages in this plate structure and at numerical modeling of the problems. 

The inverse problem of identifying the presence, location and size of damage, such as cracks and holes, in a plate 
structure can be modeled using optimization and parameter identification techniques. In Lopes et al. (2010), an inverse 
problem of identifying damage in a plate structure was solved using both optimization through genetic algorithm (GA), 
and parameter identification techniques through artificial neural network (ANN). These two independent techniques for 
inverse problem provide a means to verify the numerical results obtained for the location and size of the damage in the 
structure, increasing the confidence in the damage identification results. 

Stochastic treatment can be performed through parameter identification procedure (for example, Kalman Filter, KF) 
or stochastic optimization (for example, or through Response Surface Methodology, RSM, or Monte Carlo Simulation, 
MCS). Procedures to obtain the response surface can include Design of Experiment (DoE) with regression, or the 
learning of structural behavior through a neural network procedure.  

In stochastic optimization, robust optimization concept comes up. Optimal values to the objective functions and 
minimum variations of these functions at the optimal point vicinity are the goals of robust optimization. In this case, 
robust optimization is a Multiobjective Optimization Problem (MOOP). A MOOP can be solved through classic 
multiobjective optimization techniques and multiobjective evolutionary algorithms. The classic techniques (Weighting 
Objectives Method; Global Criterion Method) convert a MOOP to a simple optimization problem, i.e., a vector of 
objective functions is change to a single function that can be solved by some mono-objective optimization algorithm. 
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Multiobjective evolutionary algorithm techniques can find multiple solutions (optimum solutions or non-dominated 
solutions) at the same time. Since multiple solutions are found, decision making methods (for example, a procedure 
based on fuzzy theory) can be used to find the better tradeoff solution for a given problem. 

An explanation about multiobjective optimization using GA is present in (Konak et al., 2006). In that work, 
formulation about multiobjective optimization, GA, and multiobjective GA are presented. In addition, some 
methodologies for multiobjective GA are described, shown advantage and disadvantage about each technique. 
Multiobjective optimization consists of two methodologies: i) to solve a problem as mono-objective optimization 
through matching all objectives in a single objective, or one objective is chose as the function to be optimized e the 
others objectives are moved to constraint set; ii) to find a optimal solutions set of Pareto (Pareto front or non-dominated 
solutions set). Some multiobjective evolutionary algorithms based on Pareto for this second methodology can be finding 
in Abido (2006) (NSGA – Nondominated Sorted Genetic Algorithm, NPGA – Niched Pareto Genetic Algorithm, and 
SPEA – Strength Pareto Evolutionary Algorithm). These algorithms are used in that work to solve a problem of non-
linear multiobjective optimization of a power system. Furthermore, a decision making procedure based on fuzzy set 
theory to find the best tradeoff solution of Pareto front is presented.  

Some authors have been developing works in damage detection area. Some works describe that damage in a metal is 
a process of initiation and growth of discontinuity in solid mean, such as, microcracks and voids (Lemaitre, 1984; 
Lemaitre and Dufailly, 1987). In continuum damage mechanics, material damage is a property that reduces material 
strength until failure. Damage can appear at some point of a geometric discontinuity, as an example, a hole or a crack. 
Thereby, tension distribution on a plate structure is not uniform at the section where there is a geometric discontinuity, 
that is, the tension value nearness of geometric discontinuity is greater than distant points on a structure. For 
simplification, a hole is considered as damage in this work. 

The presence of damage may induce rapid changes in the field variable of the problem, and even discontinuities in 
the governing equation in the domain. Classical calculus-based optimization methods require evaluation of derivatives 
of the objective function, which may not be possible to be obtained, or may be numerically obtained, with unacceptable 
inaccuracy. Besides, these problems can have several local minima (multiple solutions), and thus a global optimization 
method (such as GA) is a better choice for the numerical solution (Stravoulakis and Antes, 1998; Engelhardt et al., 
2006). 

Considering the direct problem modeling, numerical methods, such as BEM or the finite element method (FEM) can 
be used. BEM is used in (Martin et al., 1995) where a new method was developed for finding deformations and 
tractions on parts of the boundary where these quantities are unavailable. This technique requires over-specified 
boundary on other parts of the boundary, i.e., both the displacements and the tractions must be specified at these other 
boundary subregions. The study or analysis of damage in a plate structure can be done through the distribution of 
stresses in this plate structure.  

In this work, BEM approach in 2D was used for elastostatics problem. Damage is simulated by the presence of a 
hole inside the domain. Besides, the boundary conditions for the internal boundary of the plate structure (the hole) were 
set assuming zero traction. For each run of the direct model, the information about the location and radius of the hole, 
and also about the boundary conditions, loading, and plate structure and hole discretization, is also provided. After 
evaluating the boundary solution, the BEM code evaluates, as a post-processing, some quantities of interest at selected 
interior points. The selected interior points are candidates to be sensor locations, for a future experimental setting, and 
the quantities of interest at these points may be the quantities that these sensors are able to measure. Each run of the 
direct method using the elastostatics BEM formulation provides three pieces of information at an interior point – the 
components of the stress tensor, i.e., two normal stresses and one shear stress. The values of the normal stress and the 
shear stresses depend on the system of coordinates being used, or on the normal direction of the cutting plane that 
passes through the point of interest. As the goal of the inverse method is to identify and locate the hole, but not to 
identify any direction-dependent properties, the desired quantities to be supplied to the inverse model should be scalar 
quantities obtained at the selected interior points, and not direction-dependent quantities. Scalar quantities of interest 
can be obtained as the invariants of the stress tensor – in 2D, the mean stress and the octahedral stress – at the selected 
interior points. The mean stress and the octahedral stress are independent scalar fields, and either one can be used as the 
variable of interest at the selected interior points. In this work, the mean stress was adopted as the quantity to be 
provided to the inverse model for the elastostatics problem. 

For the inverse problem, the direct BEM model first evaluates the differences in the quantity of interest (mean 
stress) between the undamaged plate and the plate with the damage, for all selected interior points. These differences 
are then supplied as input to the optimization (GA and Multiobjective GA) subroutines. The main idea for passing only 
differences of the quantities of interest is to avoid any possible bias related to the magnitude of these quantities, as only 
their change (due to the presence of the hole) is important for the inverse problem. The information provided by the 
BEM model for the direct problem is used for comparison with similar information, which must be available, for a plate 
with a hole with unknown size and location. Usually, the information on the “real” plate structure would be available by 
means of an experimental device, in which sensors would be put in all selected interior point locations. For the purpose 
of validating this approach, the plate structure with the “real” hole is also simulated with the BEM model, so the inverse 
problem algorithm will try to identify and locate this simulated “real” hole. Finally, in this work a robust optimization 
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was performed, considering two functions: one related to the difference in mean stress between undamaged plate and 
the plate with the damage, other function related to minimum variations of this difference function at its optimal point 
vicinity. All subroutines in this work were written using the MATLAB® platform.  
 
2. BOUNDARY ELEMENT METHODS FOR DIRECT PROBLEM 
 

Numerical methods, such as BEM or FEM can be used for modeling the direct problem. In the FEM, the problem 
domain is partitioned into a number of subdomains (or finite elements) with connectivity between the elements 
provided through common nodal points. In the BEM, the governing partial differential equation of a domain is 
transformed into a set of integral equations, which relate the boundary variables (both known and unknown) (Basu, 
2003; Brebbia and Dominguez, 1992). The BEM has some advantages with regard to FEM (Basu, 2003): i) BEM 
discretization is done only in the boundary of the domain, while FEM requires the discretization of the entire domain; 
ii) the number of equations associated with BEM is smaller than in the FEM approach, for the same degree of accuracy; 
iii) BEM is well suited for problems with singularities, such as in linear elastic fracture mechanics.  

The BEM is a numerical procedure well adapted for the modeling of a structure with damage. In this method, the 
distribution of the quantities of interest in the domain is obtained from the information of the distribution of certain 
quantities in the boundary. Thus, the problem is described based on what happens in its boundaries, reducing the 
dimension of the problem and simplifying numerically the treatment.  

In this work, the model investigated is the elastostatics formulation (see references (Brebbia and Dominguez, 1992; 
Paris and Cañas, 1997) for this formulation). A direct method for an elastostatics problem is modeled, where the 
distribution of the stresses on the external surface of a thin plate is analyzed. Without a hole, the distribution of the 
displacement and stresses is known a priori. If a small hole is included, this information is unknown and must be 
obtained numerically from the BEM solution. When modeling the damage detection problem by means of an analysis of 
the elastic response of the structure under excitation, perturbations in the expected response imply in the presence of 
damage. Thus, the damage in the structure will characterize its behavior, static or dynamic. In Lopes et al. (2010), the 
boundary integral equation formulation for elastostatic problem and the boundary element discretization were 
described. 
 
3. OPTIMIZATION USING GENETIC ALGORITHMS 
 

GA is a search method based on the processes of natural evolution. This method works with a set of possible 
solutions for a given problem, composing the initial population. In other words, GA uses multiple points to search for 
the solution rather than a single point in the traditional gradient based optimization method (Chou and Ghaboussi, 
2001). In this algorithm the problem variables are represented as genes in a chromosome (individual). The chromosome 
for the damage detection problem can be assembled as showed in Lopes et al. (2010). Starting from an initial 
population, the individuals with better adapted genetic characteristics have higher chances of surviving and 
reproducing.  

According to Burczynski and Beluch (2001), the GA's are methods that do not depend on the choice of the initial 
point, increasing the chances of obtaining the optimum global of the system. So that the population is diversified and 
maintain certain acquired adaptation characteristics by the previous generations, the genetic operators (selection, 
crossover and mutation) can be used. These operators transform the population through successive generations, 
extending the search until arriving to a satisfactory result. For more details about how these operators work, see 
references (Goldberg, 1998; Spall, 2003; Mitchell, 1999). 

In this work, the optimal solution for unknown parameters of the damage (location and size) is obtained through the 
GA for elastostatics formulation of BEM. Considering this formulation (elastostatics formulation), the functional is 
defined as the difference between the measured (simulated) values of the local difference in the mean stress (between 
the undamaged plate and the plate with the damage) and the values of the same differences in mean stress calculated at 
the same points by the code (assuming several different locations and sizes for the “numerical” damage). The functional 
corresponds to the fitness function of the GA. The minimization of this fitness function allows the damage detection 
program to find the unknown parameters of the damage. The functional formulation is shown at Eq. (1). 
 

( ) 2

1

1

2

n

j i ji
i

J measured calculated
=

= −∑  (1) 

 
being n the number of internal points i (“sensors” placed in the plate) where the differences are evaluated; measuredi the 
vector of simulated values for the differences obtained using BEM, for a given damage; and, calculatedji the vector of 
differences in mean stress (elastostatics formulation) calculated by the code for each individual j. 
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4. UNCERTAINTIES TREATMENT OF DAMAGE DETECTION PROBLEM 
 

Considering uncertainties treatment, both direct and inverse problems are stochastic, therefore some kind of 
treatment of randomization needed to be performed at the variables of problems. Stochastic treatment can be performed 
through parameter identification procedures (KF) or stochastic optimization (RSM; MCS). At this work, stochastic 
optimization was used. DoE can be used to collect some data to stochastic optimization. DoE is a technique that creates 
a meta-model through regression function; therefore, a created response surface can be used at optimization algorithm. 
A reduction of experiments is possible using DoE, whereas it is possible to know influence of variables at performance 
of a given problem or process. Moreover, some improvement is obtained at results precision through detection of 
interaction among factors and detection of optimal levels of these factors (Montgomery and Runger, 2003). 

When two or more objective functions need to be optimized in a problem, decision making procedures have to be 
accomplished in relation to multiobjectives. In other words, before solving some optimization problem, the programmer 
needs to decide how to treat the multiobjectives (for example, when two objective functions are presented, one function 
can be used as objective function and other one as constrained functions; or, both functions can be used as objective 
functions, combining and putting weight in the functions).  

In stochastic optimization, robust optimization concept comes up. Optimal values to the objective functions and 
minimum variations of these functions at the optimal point vicinity are the goals of robust optimization. In this case, 
robust optimization also is a multiobjective problem and the optimal solutions for a problem are robust because these 
solutions are points in the feasible region where the values of objective function are insensible to small variations 
around these points. 
 
4.1 Multiobjective optimization 
 

Several problems have multiobjectives that need to be treated. These problems are known as Multiobjective 
Optimization Problems (MOOP) or Multiple Criterion Decision-Making (MCDM) problems. At MOOPs, the objective 
functions can be as maximized as minimized. Considering a minimization problem, the maximization functions need to 
be multiplied by (-1), change these functions to minimization functions. General mathematical formulation to the 
problem can be done according to Eq. (2) (Deb, 2001). 

 

( ) ( ) ( )
( )
( )

1 2max ou min , , ,

. . 0, 1, ,

0, 1, ,

, 1, ,

nn M
xx

j

k

L U
i i i

f x f x f x

s t g x j J

h x k K

x x x i n

∈ℜ∈ℜ
  

≥ =

= =

≤ ≤ =

…

…

…

…

 (2) 

 
with ( ) : n

if ⋅ ℜ → ℜ , ( ) : n
jg ⋅ ℜ → ℜ  and ( ) : n

kh ⋅ ℜ → ℜ . Also, nx∈ℜ  is a vector of decision variables, Lix  

represents the inferior limit and Uix  represents the superior limit of decision variables. The variable n represents a 

quantity of decision variables, J represents a quantity of inequality constraints and K represents a quantity of equality 
constraints. 

A MOOP can be converted to a single optimization problem through classic techniques, such as Weighting 
Objectives Method and Global Criterion Method. When a single optimization problem is solved, only one solution is 
found in each run of the method. However, when some technique of multiobjective evolutionary algorithm is used to 
solve a MOOP, several solutions can be found at the same time. Then, a problem solved through these techniques has a 
set of optimal solutions, or Pareto-optimal solutions. 
 
4.2 Pareto-optimal solutions 
 

Pareto-optimal solution or Pareto front is a non-dominated solutions set (optimal solutions set) for a multiobjective 
problem. Evolutionary algorithms are used in MOOPs because a set of Pareto optimal solutions are found when these 
algorithms are run once. The first GA multiobjective is known as VEGA (Vector-Evaluated Genetic Algorithm) 
(Schaffer; 1984), however this algorithm does not present diversity mechanism, elitism, and each subpopulation is 
evaluated with relation to one different objective. At this algorithm, a population with N individuals is divided in K 
subpopulations with equal size. VEGA has a disadvantage to converge to extreme of each objective (Konak et al., 
2006). Others evolutionary algorithms appear after VEGA, such as MOGA - Multiobjective Genetic Algorithm 
(Fonseca and Fleming, 1993), NPGA - Niched Pareto Genetic Algorithm (Horn, 1994), NSGA - Non-Dominated 
Sorting Genetic Algorithm (Srinivas and Deb, 1994), NSGA-II - Fast Non-Dominated Sorting Genetic Algorithm (Deb 
et al., 2000 and 2002), SPEA - Strength Pareto Evolutionary Algorithm (Zitzler and Thiele, 1999), SPEA-2 (Zitzler et 
al., 2001), PESA-II - Region-based Selection in Evolutionary Multiobjective Optimization (Corne, 2001), and so on. 
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These algorithms are different each one at some characteristic (manner of assigning value of fitness function to 
individuals; elitism, or diversification mechanism). 

The first evolutionary algorithm used to solve a MOOP was NSGA. This algorithm is different from simple GA 
only in manner that selection operator works. However, NSGA presents high computational complexity, lack of elitism, 
and need of specifying a sharing parameter. Then, NSGA was changed and a new version appears with name NSGA-II 
(Deb et al., 2000). NSGA-II is a multiobjective algorithm based in GA that sorts the solutions using Nondominated 
Sorting technique. In this technique, a population is divided in groups of individuals (or fronts) according to dominance 
level. In each subset, no individual or solution dominates anybody. The best solutions to current generation are the 
individuals of first front therefore, on the first front are present the individuals that are not dominated by no other 
individual of generation. So, these individuals are near to the Pareto line and they are known as non-dominated 
solutions. Besides, NSGA-II uses an operator known as crowding distance to estimate density of solutions around a 
point or individual. This operator allows a uniform spread of solutions along the Pareto lines. The crowding distance 
operator sorts each individual according to its distance in relation to neighbor points on the same front (in relation to 
each objective) (Deb et al., 2000). 

At MATLAB ® (version R2008a or superior), the function gamultiobj returns a Pareto front using GA. This function 
is a variation of NSGA-II algorithm where GA uses a controlled elitism. A controlled elitism enables that the population 
diversity increase even so an individual has low value of fitness. Elitism is controlled through two parameters: 
ParetoFraction that limits the number of individuals of population on Pareto front, and DistanceFcn that avoids 
individuals that are far from this front. Besides, a function can be written to calculate distance measure of individuals 
(measure of the concentration of the population), or the distancecrowding function can be used as default. The 
distancecrowding function presents an extra parameter that computes the distance in decision variable or design space 
(genotype) or in function space (phenotype). 
 
4.3 Decision Making based on fuzzy set theory 
 

Decision making methods can determine the best tradeoff solution for the problem before some multiobjective 
evolutionary algorithm finding the non-dominated solutions set (Pareto front). All solutions on Pareto front are 
equivalent (with the same dominance level). Then, a procedure based on fuzzy set theory can be used to accomplish the 
decision work. 

Traditional logic works only with true or false (exact values), on the other hand, fuzzy logic (fuzzy set) works with 
“degrees of truth” or “degrees of false” (imprecise information). Expressions like “more or less” and “maybe” can be 
mapped with fuzzy logic. In fuzzy logic, due to the imprecise nature of the decision maker’s judgment, the i-th 
objective function if  of a solution on Pareto front is represented by a membership function iµ  (Abido, 2006). The 

values of membership function designate the level of achievement of the objective functions of some problem, and 
these values are between 0 and 1. There are several kinds of membership functions, such as, linear, triangular, 
trapezoidal, or exponential membership functions (Sakawa et al., 1987). In this work, a trapezoidal membership 
function was used (Eq. (3)). 
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where min

if  and max
if  are the minimum and maximum values of the i-th objective function, respectively. 

For each nondominated solution k , and regarding domN  the number of nondominated solution of the Pareto front, 

the membership function is normalized according to Eq. (4). 
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The Best tradeoff solution is find through the maximum value of kµ , considering Eq. (5). 

 
( ); 1,2, ,k dommáx k Nγ µ= = …   (5) 
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The values of min
if  and max

if  can be find after ranking the nondominated solutions on Pareto front. The worst solution 

for i-th objective solution is the variable max
if . 

In fuzzy set there are terms known as qualifiers or modifiers that modify the shape of fuzzy sets. The qualifiers 
allow mapping in fuzzy values the human language that is full of imprecise terms. The qualifiers “very”, “more 
important”, “few”, and “more or less” are some examples of these terms. The fuzzy qualifiers are similar to weight of a 
function and they are used at the membership function. 
 
5. NUMERICAL RESULTS AND DISCUSSION 
 

For the elastostatics problem, a BEM model was built for the plate with a hole with the boundary conditions 
illustrated in Fig. 1(a). A mesh with 48 constant elements was implemented for the external contour (outer boundary) 
and 12 constant elements in the hole, nine sensors were considered on the plate surface (Fig. 1(b)). At the present work, 
the sensors were uniformly distributed on the plate and no positioning study of the sensors was performed. The plate 
was simulated with shear modulus equal to 94,500 MPa and a Poisson’s ratio for plane strain equal to 0.1. 

 

 
 

(a) (b) 
 

Figure 1. Plate model: (a) dimensions, loading, and boundary conditions. Insert shows a stress-free hole; (b) boundary 
discretization and sensor locations. Insert shows hole discretization. 

 
5.1 Formulation of multiobjective optimization problem 
 

The problem of damage detection in a thin plate can be formularized as a mono-objective optimization problem or 
as a multiobjective optimization problem, both of them using GA. The mono-objective optimization problem was 
presented and solved in Lopes et al. (2010). So, in this present work, the multiobjective optimization problem is 
considered.  

For solved the multiobjective optimization problem as a robust optimization problem, initially a function for the 
standard deviation of the functional formulation (Eq. (1)) needs to be found. This function corresponds to the square 
root of variance of the functional. The variance function is obtained through a multivariate regression with terms until 
third order. The independent variables are information about holes (x- and y-coordinates of its center, and also its 
radius) and the dependent variable is the standard deviation of the functional formulation for each hole. A matrix with 
three columns (x, y and radius) and 275 lines was formed. This matrix was assembled considering that the holes had 
radius from 0.10 cm to 0.15 cm, with step size of 0.005 cm, and the center of holes were considered at positions from 
1 cm to 5 cm, with step size of 1 cm for coordinates x and y. 

In a first analysis, the elements of the matrix were considered as the mean values (µ ) of a uniform distribution (the 

analysis was also done for the mean values of a normal distribution). The standard deviation for each hole localization 
(σ ) was considered equal to 10% of one-third of a unit (3 0.10σ = ), and the standard deviation for each radius value 
( rσ ) was considered equal to 10% of one-third of the mean value for the radius value (0.10 3r rσ µ= , or, 

3 0.10r rσ µ= ). Then, a region near to the mean values (of parameters x, y and r) was found, where 100 random 

numbers from a uniform distribution were placed (another analysis for normal distribution was also done). This region 
was found through two limits, an inferior (inf ) and a superior (sup) limit, near the mean value. The inf  limit was 

guessed as the mean value minus 10% of amplitude value and the sup limit was guessed as the mean value plus 10% of 

amplitude value (Eq. (6)). 
 

σ = 0 
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inf 0.10 0.60

sup 0.10 0.60

amplitude

amplitude

µ µ σ
µ µ σ

= − = −
= + = +

  (6) 

 
The amplitude value (interval of values) is the difference between the mean value plus three times the standard 

deviation and the mean value minus three times the standard deviation, according to Eq. (7). 
 

( ) ( )3 3 6amplitude µ σ µ σ σ= + − − =   (7) 

 
These inf  and sup limits were used to find random numbers, as shown in Eq. (8), for each x, y and r variables. 

 

( )variable rand(100,1)inf sup inf= + −   (8) 

 
In this Eq. (8), rand(100,1) is a function that uniformly distributed 100 (a hundred) pseudorandom numbers on an 

interval between 0 and 1. When the function randn(100,1) is used, this function returns 100 (a hundred) pseudorandom 

numbers drawn from a normal distribution with mean 0 and standard deviation 1. 
Now, with the “measured” holes (determined by mean values of its parameters; the “measured” hole is the “real” 

hole on the plate) and the “calculated” holes distributed around each “measured” hole, the mean stress was found for 
each hole through a routine that use the BEM. These mean stress values were found on 9 interior points of plate 
structure (sensors at positions (1.0;1.0) cm, (1.0;3.0) cm, (1.0;5.0) cm, (3.0;1.0) cm, (3.0;3.0) cm, (3.0;5.0) cm, 
(5.0;1.0) cm, (5.0;3.0) cm, and (5.0;5.0) cm). Then, the “measured” and the “calculated” values of mean stress were 
used by the functional formulation (Eq. (1)). With this technique, the functional variance could be found for each hole. 

The last step was to find a functional variance function for each hole. A natural logarithm of values was used for a 
change of scale, then, a multivariate regression was performed with regard to x , y  and r  parameters (considering a 

95% confidence level). Since the place of sensors was not considerate at computations of the functional variance 
function, discontinuities can be avoided at this function. The multivariate regression presented a 2R  value equal to 
72.8% and a p-value equal to 0 for the uniform distribution, and a 2R  value equal to 83.9% and a p-value equal to 0 for 
the normal distribution. As the regression function for normal distribution presented a greater 2R  value than the 
function for uniform distribution, that regression function was chosen as the functional variance function. 

The regression function for normal distribution is presented in Eq. (9). In this function, all regression terms were 
considered. 

 

 

5 1 2 2 1 2 2 2
var

1 3 3 2 3 2 3 1 2

1 2 1 2 2

1.553 10 9.857 10 1.829 1.070 9.339 10 2.610 10 6.083 10

8.038 3.733 2.421 10 2.696 10 2.503 10 1.703 10 1.296 10

2.361 10 6.689 10 4.175 10

J r x y r x y

rx ry xy r x y r x

r y x r x

− − −

− − −

− −

= − × + × − − − × + × + × +

+ + + × + × − × + × − × +
− × − × + × 2 1 2 2 2 13.838 10 7.355 10 1.458 10y y r y x x y r− − −+ × − × − ×

 (9) 

 
5.2 Analysis of the results from multiobjective optimization problem 
 

The objectives (minimum value of functional J  and minimum value of its variance) of damage detection problem 
were solved through a variation of NSGA-II algorithm. The initial population was assembled with 168 individuals, 
considering the presence of sensors information (difference at mean stress for elastostatic formulation of BEM). The 
holes of this population had radius equal to 0.10 cm, 0.125 cm and 0.15 cm, and the x and y-coordinate of the center of 
the hole was varied from 1.0 cm to 5.0 cm with a step size of 0.5 cm. The place of sensors was not considerate in the 
initial population. 

The Pareto front for a hole in (1.0;2.0) cm and radius equal to 0.12 cm is showed in Fig. 2. This Pareto front was 
obtained in generation equal to 106. 
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Figure 2. Pareto front obtained by multiobjective GA. 
 

The number of generations equal to 200 and a tolerance less than or equal to 61 10−×  were assumed as stopping 
criteria. The individuals (parents) for next generation were selected through a tournament and the heuristic function 
(with a value of ratio equal to 0.9) was assumed as crossover function. The mutation function adopted was the adaptive 
feasible function (Matlab®, version R2008a) that randomly generates directions that are adaptive with respect to the last 
successful or unsuccessful generation. The crossover fraction was set equal to 0.95 (95%) and the mutation fraction was 
considered equal to 0.05 (5%). The migration of individuals was considered in both directions and the elitism was 
considered equal to 1 individual. The Pareto fraction was considered equal to 0.75, that is, 75% of individuals are kept 
on the first Pareto front while individuals from higher fronts are selected. The distancecrowding function ((Matlab®, 
version R2008a)) (that computes distance measure of an individual), computed in function space (phenotype), was used. 

The number of points on the Pareto front (Fig. 2) was equal to 126. The value of the membership function (Eq. (3)) 
was found for each non-dominated solution on the Pareto front and this values set was normalized (Eq. (4)). Then, the 
best tradeoff solution was found through Eq. (5) to the values set of normalized membership function. Finally, the hole 
location ( ,x y) and radius r  of this hole can be found through the best tradeoff solution. 

Figure 3 shows the representation of 126 points of Pareto front is non continuous (dashed) line, the “real” hole is 
represented in continuous line, and the results (“Result 1”, “Result 2”, and “Result 3”) from fuzzy decision making 
(considering different fuzzy qualifiers) is represented in dash-dot line. The “real” hole, Result 1, and some results from 
multiobjective algorithm are showed with more details at zoom area in this Fig. 3. 

 

 
 

Figure 3. “Real” hole (full line), holes found by the variation of NSGA-II algorithm (dashed line), and results from 
fuzzy decision making (dash-dot line). 
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In this Fig. 3, “Result 1” is the result from fuzzy decision making where the functional formulation function J  is 

“more important” than standard deviation (varJ ) of this functional. In other words, the weight of J  can be equal to 

0.8 Jµ  (then, the weight of varJ  can be ( ) ( )1 0.8 std Jµ− ), or the weight of J  can be equal to 0.9 Jµ  (then, the weight 

of varJ  can be ( ) ( )1 0.9 std Jµ− ). Therefore, a hole was found at location 1.40x =  cm, 1.99y =  cm, and radius 

0.15r =  cm. “Result 2” presents the result for no importance (without to use the fuzzy qualifier) to the functions 
(functional formulation and its standard deviation). “Result 3” is the result for the case where only the standard 
deviation of functional formulation is present (0 Jµ  e ( )1 std Jµ ). This last result (“Result 3”) corresponds to the hole 

more distant from “real” hole. Finally, the deterministic result (1 Jµ  e ( )0 std Jµ ) correspond to the hole closer to the 

“real” hole and the location of that hole is 1.06x =  cm, 2.00y =  cm, and radius 0.12r =  cm. 

Now, considering an initial population with only 6 individuals (1 1 0.10; 1 2 0.14; 1 4 0.12; 3 2 0.11; 3 4 0.13; 5 5 
0.10) without the presence of sensors information (difference at mean stress for elastostatic formulation of BEM) in this 
population, damage detection problem were solved. The BEM routine (considering sensor information) was used when 
the fitness function was available. 

The number of generations equal to 15 and a tolerance less than or equal to 61 10−×  were assumed as stopping 
criteria. The crossover fraction was set equal to 0.75 (75%) and the mutation fraction was considered equal to 0.25 
(25%). No elitism was considered for this simulation. The others parameters were set according to the case where the 
sensors information was present at GA population. 

The results found by multiobjective GA to a hole at (1.0,2.0) cm and radius equal to 0.12 cm are showed in Tab. 1. 

In this Tab. 1, the values of J  and varJ  correspond to the non-dominated solutions of problem. These values (J  and 

varJ ) are used to find the membership values (Eq. (3)), that are normalized (Eq. (4)), resulting at the values kµ  

presented in sixth column of Tab. 1. 
Then, the best tradeoff solution is equal to 0.328 (Eq. (5)). This value is present in second and fourth line of Tab. 1. 

After finding the best tradeoff solution, a hole at 1.00x =  cm, 2.00y =  cm, and radius 0.11r =  cm can be determined. 

 
Table 1. Results for multiobjective GA using fuzzy decision making without the sensors information in the GA 

population. 
 

J  MPa varJ  MPa x  cm y  cm r  cm kµ  

19.467 0.640 2.969 4.000 0.130 0.050 
7.002 1.048 1.000 2.000 0.109 0.328 
10.654 0.938 1.031 2.012 0.138 0.245 
7.002 1.048 1.000 2.000 0.109 0.328 
19.467 0.640 2.969 4.000 0.130 0.050 

 
The results of Tab. 1 are presented in Fig. 4. The number of points on the Pareto front was equal to 5. The result 

obtained from multiobjective GA approach using fuzzy decision making shows that the exact location of “measured” 
hole was found. 

 

 
 

Figure 4. Graphical representation of 5 points from Pareto front (dashed line) and “real” hole (full line). 
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6. CONCLUSIONS 
 

In this work, an inverse problem of identifying damage in a plate structure was solved by a global optimization 
technique using genetic algorithms. The inverse problem was modeled as a multiobjective problem where minimum 
value of functional formulation and minimum variations around this optimum value are considered. Then, the 
multiobjective problem was modeled as a robust optimization problem where the results are not sensible to small 
variations around the optimal points. For the direct model in the inverse problem, an elastostatics problem was modeled 
through a formulation of boundary element method (BEM). The analysis of the results indicates that the damage 
detection code using GA find a region for the probable occurrence of the hole. In other words, the region is found due to 
own randomness of the GA approach that generates a different optimal solution every time it is run. Considering the use 
of different techniques to obtain the results for multiobjective problem, and the use of different populations of GA, a 
comparison between these results could be done. Besides, the computational cost to solve the problem, when the 
sensors information is not presented in the GA population, was bigger than the program where this information was 
present in the population. This difference at computational cost occurred because the BEM routine was executed several 
times during the run of the damage detection. 
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