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Abstract. The more stablished method employed to generalize the linear viscoelastic oscillatory material functions for
the interpretation of Large Amplitude Oscillatory Shear is based on the so-called “Fourier-transform rheology", where
the nonlinear response of the material is decomposed into a Fourier series. In this approach, the harmonics associated
to the frequencies that are higher than the imposed one are the measurers of the nonlinear response. This methodology
has its merits, since it offers an objective rationale for the treatment of complex behavior. However, it has received a
lot criticism due to lack of physical interpretation of the role played by the different higher harmonics. This drawback
is founded on the very soul of these methodologies: the necessity of a basis of infinite functions in order to provide the
full description. Towards the task of joining understanding and predictability of complex material behavior we propose
a different philosophy for the interpretation of LAOS results. The methodology consists on choosing a constitutive model
whose parameters are clearly and physically interpreted and using it as a framework to understand material behavior.
We call this methodology Model-Based Framework Rheology (MBFR). A model can be roughly seen as a combination of
basis functions and coefficients or parameters. The philosophy consists on taking the advantage of a our experience and
knowledge with respect to a certain model parameter and generalize its concept to a more complex situation by relaxing
the usual restriction this parameter has in the model where it was conceived and defined. The resulting analysis is born
with a physical interpretation and is ready to be implemented in a different problem. The difficulty, and the strength, of this
philosophy comes from finding a model framework with a reasonable degree of complexity. If the basis functions form a
too simple set, then the parameters will carry all the complexity of the material. In this case it seems that is not reasonable
to expect that the model will perform adequately in different conditions. On the other hand, if one defines an enormous
number of functions, there are lots of coefficients to be determined and it is hard to attribute a physical interpretation to
these coefficients, what is not desirable also. However, an appropriate choice of the model framework provides a rich
interpretation of the results and a reasonable predictiveness of the material behavior in other conditions are obtained. We
show that the usual approaches of SAOStrain and LAOStrain have a clear interpretation from the Kelvin-Voigt framework
while the usual approaches employed in SAOStress and LAOStress are better interpreted from a Maxwell perspective. A
more robust model, where elasticity, viscous response, plasticity and thixotropy are present, is offered as a framework for
the analysis of the LAOS response of complex materials.

Keywords: keyword 1, keyword 2, keyword 3. . . (up to 5 keywords)

1. INTRODUCTION

1.1 General aspects of LAOS

After a long tradition of usage of oscillatory motion in the linear viscoelastic regime, where the material rheologi-
cal functions G′ and G′′ are the acclaimed measurable quantities, nowadays, LAOS is considered the most promising
methodology to understand the behavior of complex material. LAOS experiments combine two important features: it
probes the material in the nonlinear viscoelastic regime and it uses the advantages of the oscillatory motion. The former
is a practical need, since many industrial processes subject complex material to complex behavior and because of that,
understanding how this material behaves in the nonlinear regime is fundamental for optimization and design purposes.
The latter concerns the strength that is attributed to oscillatory motions, namely its capacity of tuning amplitude and
frequency independently (Pipkin, 1972). Since we can construct independent Weissenberg and Deborah dimensionless
numbers from amplitude and frequency (Giacomin et al., 2011), a sweep of these two entities provides a large spectra of
material behavior.

One important and largely employed methodology to understand the complex behavior of these materials is to rep-
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resent its response in the so-called Lissajous-Bowditch curves. The elastic form is obtained from the trajectory of the
response in the stress-strain plane while in the viscous form the response is represented in the stress-strain rate plane.
Besides the obvious results expected from a Newtonian and a Hookean materials, the linear response is also predictable
in a Lissajous-Bowditch representation, where an elliptical orbit is the projected curve in each plane. Hence, the degree
of nonlinearity can be inferred by a “degree of non-ellipticity" of the curve form. This way of interpreting the data can
give useful insights and for sure increases the comprehension of material behavior. However, mathematically defined and
physically soundable quantities are sine qua non conditions for a description of the material behavior. Therefore, the
challenge faced by the rheology community is to present measurable and meaningful rheological quantities that can be
consider the nonlinear counterparts of G′ and G′′. Until now, there is no consensual rationale for such generalization.

The first and more stablished method employed to generalize the linear viscoelastic oscillatory material functions is
based on the so-called “Fourier-transform rheology" (Wilhelm, 2002), where the nonlinear response of the material is
decomposed into a Fourier series. In this approach, the harmonics associated to the frequencies that are higher than the
imposed one are the measurers of the nonlinear response. An alternative representation form is to use a different-from-
sinusoidal set of orthogonal basis. The most representative approach of this form is the Chebyshev polynomials of the
first kind (Ewoldt et al., 2008). These two methodologies have their merits, since they offer an objective rationale for the
treatment of complex behavior. However, they have received a lot criticism (Cho et al., 2005; Rogers and Lettinga, 2012;
Rogers, 2012) due to lack of physical interpretation of the role played by the different higher harmonics. This drawback
is founded on the very soul of these methodologies, i.e. on the necessity of a basis of infinite functions in order to provide
the full description.

There are few options available in the literature that can be used as alternatives to the Fourier-Chebyshev approach.
Two of them are worthy of mentioning here. The first one is the Stress Decomposition (SD) of Cho et al. (2005) and
the second is the Sequence of Physical Processes (SPP) of Rogers (2012). Although the two of them have different
rationales, they offer approaches to analyze the nonlinear material response by considering two “material" functions
(instead of infinite functions of Fourier and Chebyshev analysis) that can be interpreted as generalized dynamic moduli.
The two approaches present alternative rheological functions that recover the linear viscoelastic moduli in the limit of the
linear regime. The SD approach is based on a decomposition of the stress response, of a LAOStrain input of the form
γ = γo sin wt, into two additive parts: σ′ and σ′′. Where σ′ is a function of the strain, γ, and σ′′ is a function of the strain
rate, γ̇ = ωγ. By symmetry arguments, requiring that σ′ is an odd function of γ and an even function of γ̇ and that σ′′ is
an even function of γ and an odd function of γ̇, they come to this unique decomposition and stated that σ′ is the elastic
part of the stress and σ′′ is the viscous part of the stress. Writing σ′ = Γ′γ and σ′′ = Γ′′γ̇, they called Γ′ and Γ′′ the
generalized dynamic moduli. The SPP approach was developed in Rogers et al. (2011) and Rogers and Lettinga (2012),
where the sequence of physical processes was identified in trajectory through the 3D space defined by stress-strain-strain
rate. A quantitative oriented form of SPP was presented by Rogers (2012). In this approach, the projection of the binomial
vector on the strain-strain rate plane is assumed to be the generalized complex modulus. The projection of this vector into
strain and strain rate directions, R′ and R′′/ω, are considered the generalized dynamic moduli. Although Γ′ 6= R′ and
Γ′′ 6= R′′/ω, in the linear viscoelastic regime, both tend to G′ and η′.

It is important to notice that G′ and G′′ moduli are considered the representatives of elastic and viscous behavior,
respectively, in the linear viscoelastic regime irrespectively of the constitutive model of the material. Hence, discovering
which are the “true" representatives counterparts of elastic and viscous behavior seems to be the natural path to follow as
far as the nonlinear regime is considered. Therefore, the Fourier-Chebyshev analyses generalize G′ and G′′ by a series
of coefficients, G′n and G′′n in the case of the Fourier series, and en and vn in the case of the Chebyshev functions. In
these cases, the first coefficient reduces to linear viscoelastic counterpart and the coefficients associated to functions of
higher order vanish in the linear viscoelastic regime. On the other hand the SD-SPP analyses generalize each modulus as
a single generic version, and hence, there are two new entities, Γ′ and Γ′′ in the case of SD, and R′ and R′′ in the case
of SPP, that reduce to their linear viscoelastic counterparts. While having only two rheological functions, instead of an
infinity, seems to be an interesting approach it has the intrinsic disadvantage of coupling amplitude, frequency, and time
while the Fourier-Chebyshev approach decouple amplitude and frquency from time, being its coefficients not dependent
on time. This fact can lead to a necessity on developing further steps on the analysis, as was done by (Cho et al., 2005).
On the other hand, authors who apply the Fourier-Chebyshev expansions often use single quantities which are defined
independently from the methodology conducted. These quantities are usually defined in a specific experiment: LAOStrain
or LAOStress. The main ones are the minimum-strain modulus, G′M , the large-strain modulus G′L, the minimum-shear-
rate viscosity, η′M , and the large-shear-rate viscosity, η′L usually defined in a LAOStrain experiment as (Ewoldt et al.,
2008)

G′M ≡
dσ

dγ

∣∣∣∣
γ=0

; G′L ≡
σ

γ

∣∣∣∣
γ=±γo

, (1)

η′M ≡
dσ

dγ̇

∣∣∣∣
γ̇=0

; η′L ≡
σ

γ̇

∣∣∣∣
γ̇=±γ̇o

, (2)
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and the minimum-stress elastic compliance, J ′M , the large-stress elastic compliance, J ′L, the minimum-stress fluidity, φ′M ,
and large-stress fluidity, φ′L usually defined in a LAOStress experiment as (Dimitriou et al., 2013)

J ′M ≡
dγ

dσ

∣∣∣∣
σ=0

; J ′L ≡
γ

σ

∣∣∣
σ=±σo

, (3)

φ′M ≡
dγ̇

dσ

∣∣∣∣
σ=0

; φ′L ≡
γ̇

σ

∣∣∣∣
σ=±σo

, (4)

1.2 New philosophy

The question we raise at this point is: what is wanted from LAOS experiments? Or, what are the true benefits to have
generalizations of the linear viscoelastic moduli G′ and G′′? In a first stage, we can consider that what is aimed is a better
comprehension of the complex material we are dealing with by splitting the material response into an elastic and a viscous
parts. However, a second and very important stage is to aim predictability, i.e. the capacity of producing a model that
is able to translate the material response obtained in certain controlled circumstances and predict the material response
when the material is subjected to different inputs.

Towards the task of joining understanding and predictability of complex material behavior we propose a different
philosophy for the interpretation of LAOS results. The methodology consists on choosing a constitutive model whose
parameters are clearly and physically interpreted and using it as a framework to understand material behavior. We call
this methodology Model-Based Framework Rheology (MBFR). A model can be roughly seen as a combination of basis
functions and coefficients or parameters. The philosophy consists on taking the advantage of a our experience and knowl-
edge with respect to a certain model parameter and generalize its concept to a more complex situation by relaxing the
usual restriction this parameter has in the model where it was conceived and defined. The resulting analysis is born with
a physical interpretation and is ready to be implemented in a different problem. The difficulty, and the strength, of this
philosophy comes from finding a model framework with a reasonable degree of complexity. If the basis functions form a
too simple set, then the parameters will carry all the complexity of the material. In this case it seems that is not reasonable
to expect that the model will perform adequately in different conditions. On the other side of the problem, if one defines
an enormous number of functions, there are lots of coefficients to be determined and it is hard to attribute a physical
interpretation to these coefficients, what is not desirable also. However, an appropriate choice of the model framework
provides a rich interpretation of the results and a reasonable predictiveness of the material behavior in other conditions are
obtained. We propose this approach as a complement, rather than a substitution, of the previous methodologies employed
in the literature. In fact we will find, whenever it is possible, how to connect one approach from the other.

Below we interpret SAOS and LAOS results from the perspective of the two basis of the viscoelastic concept: the
Kelvin-Voigt and Maxwell frameworks. We show that the usual approaches of SAOStrain and LAOStrain have a clear
interpretation from the Kelvin-Voigt framework while SAOStress and LAOStress are better interpreted from a Maxwell
perspective. A more robust model (de Souza Mendes, 2011; de Souza Mendes and Thompson, 2013) where elasticity,
viscous response, plasticity and thixotropy are present is offered as a framework for the analysis of the LAOS response of
complex materials.

2. KELVIN-VOIGT AND MAXWELL MODEL-BASED FRAMEWORK TO INTERPRET LAOS DATA

Our primitive understanding of what is an elastic behavior and what is a viscous behavior is deeply connected to
Hookean and Newtonian materials, respectively. Here we can notice that the defined rheological functions (Dealy, 1995):
shear viscosity, η = σ/γ̇ and the elastic modulus, G = σ/γ can already be interpreted in the light of the proposed
philosophy. From the point of view of MBFR, one could call shear viscosity as the Newtonian viscosity of the material,
ηNW , and the shear modulus as the Hookean modulus of the material, GHK . Since viscosity and shear modulus are
physically soundable entities of purely viscous and purely elastic materials, this rheological functions have a natural
interpretation when we deal with more general cases. In this sense, we can say, for example, that the Newtonian viscosity
of a Newtonian material is constant while the Newtonian viscosity of a power-law material is a function of the shear
rate. The Generalized Newtonian Fluid can be seen, therefore, as imposing to a complex fluid a Newtonian framework,
where we had to generalize the viscosity concept in a clear way. The same approach was consider by White and Metzner
(19XX) when they used a viscosity that is a function of the shear rate in the Maxwell framework. These examples show
that the present approach is already being employed, but not in the systematic way we are presenting here. In a first
step, the Newtonian viscosity of the material and the Hookean elastic modulus of the material are interesting frameworks
for interpreting the results. However, it is intuitive that we need more to understand and predict complex behavior. For
example, when the fluid achieves a complexity of such an order that the viscosity of the GNF needs to become a tensor
that is a complex function of the kinematics, we see that a more complex framework is necessary. However, this fact does
not invalidate the use of these entities for interpreting results data.
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The next step towards the comprehension of a viscoelastic material comes from one of the two ways of coupling a
Hookean mechanism with a Newtonian mechanism: the Kelvin-Voigt model and the Maxwell model. It is not difficult to
infer how these two models have shaped our understanding and interpretation of what are the elastic and viscous parts of
the material response. It is generally accepted that a Kelvin-Voigt material is the primitive representative of a viscoelastic
solid, while a Maxwell material is the primitive representative of a viscoelastic fluid. This is so because the Kelvin-Voigt
model, given by

σ = GKV γ + ηKV γ̇, (5)

can be subjected to a constant shear stress with no continuous deformation as a fluid requires. In a Maxwell model, given
by

σ +
ηMW

GMW
σ̇ = ηMW γ̇, (6)

on the other side, any imposed stress makes the material to deform continuously.
As the title indicates, the work of Ewoldt (2013) defines nonlinear rheological material functions for oscillatory shear.

In other words, Ewoldt (2013) establishes the nonlinear rheological functions obtained in a LAOStrain and LAOStress
experiment. Since the rheological functions that arise from a sine input are different from a cosine one, a convention must
be adopted. Ewoldt (2013) proposes that a sine input of the form γ = γo sinωt should be adopted in a SAOStrain and
LAOStrain and an input of form σ = σo cosωt should be adopted in SAOStrain and LAOStrain. We are following the
same convention for the cases analyzed in the present work.

2.1 SAOStrain

The G′ and G′′ curves obtained from subjecting a Kelvin-Voigt and a Maxwell viscoelastic models to a SAOS input
of γ = γo sin wt are

G′(ω) = GKV ; G′′(ω) = ωηKV , (7)

for a Kelvin-Voigt material and

G′(ω) =
η2MWω

2

G2
MW + η2MWω

2
GMW ; G′′(ω) =

G2
MW

G2
MW + η2MWω

2
ωηMW , (8)

for a Maxwell material. Since GKV and ηKV are constants in the Kelvin-Voigt material, the only way that Eq. (7) can
be true is if G′(ω) and G′′(ω) are independent of the frequency, ω. Here we can exemplify how the MBFR approach can
be applied. Let us suppose we submit a certain material into the same SAOS input γ = γo sinωt and we obtain the two
curves of G′(ω) and G′′(ω) as functions of the frequency. From a Kelvin-Voigt framework perspective, we can identify

GKV = G′(ω), (9)

as the Kelvin-Voigt elastic modulus of the material and

ηKV = η′(ω) = G′′(ω)/ω (10)

as the Kelvin-Voigt viscosity of the material. Analogously,

GMW =
G∗2(ω)

G′(ω)
, (11)

and

ηMW =
1

ω

G∗2(ω)

G′′(ω)
(12)

are the Maxwell elastic modulus, GMW , and Maxwell viscosity, ηMW , of the material, where the complex dynamic
modulus, G∗, is defined as G∗ =

√
G′2 +G′′2. What is worthy to note is that this approach gives new interpretations

for G′(ω) and G′′(ω) results from the perspective of the parameters of the chosen model framework. In the case of
SAOStrain, the Kelvin-Voigt framework is completely aligned with the dynamic moduli,G′(ω) is the Kelvin-Voigt elastic
modulus of the material and η′(ω) is the Kelvin-Voigt viscosity. In other words, it seems that the Kelvin-Voigt framework
was conceived to interpret SAOStrain. Besides interpretation, the results obtained in this SAOS experiment, G′(ω) and
G′′(ω), can be used as inputs of the considered model. Hence, this information can be applied to different conditions (in
a Couette flow, for example) using a Kelvin-Voigt framework, but relaxing the parameters GKV and ηKV in Eq. (5) to be
functions of the shear rate.
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2.2 SAOStress

In this subsection and the LAOStress one, we are following the ideas discussed by Ewoldt (2013) and consider a stress
input of the form σ = σo cosωt.

The shear storage compliance J ′, and the shear loss complience J ′′ obtained from subjecting the Kelvin-Voigt and
Maxwell materials to a SAOS input of σ = σo cos wt are

J ′(ω) =
GKV

G2
KV + η2KV ω

2
; J ′′(ω) =

ηKV ω

G2
KV + η2KV ω

2
, (13)

for a Kelvin-Voigt material and

J ′(ω) =
1

GMW
; J ′′(ω) =

1

ηMWω
, (14)

for a Maxwell material. From a Kelvin-Voigt framework perspective, we can identify

GKV =
J ′(ω)

J∗2(ω)
; ηKV =

J ′′(ω)/ω

J∗2(ω)
(15)

as the Kelvin-Voigt elastic modulus and Kelvin-Voigt viscosity of the material. And, from a Maxwell framework perspec-
tive, we find

GMW =
1

J ′(ω)
; ηMW =

1

ωJ ′′(ω)
=

1

φ′(ω)
(16)

as the Maxwell elastic modulus and Maxwell viscosity of the material. The complex compliance, J∗, is defined as
J∗ =

√
J ′2 + J ′′2 and φ′(ω) is the viscous fluidity (tem que ver melhor o termo aqui). Again, the two viscoelastic model

frameworks give new interpretations for J ′(ω) and J ′′(ω). For a more straightforward interpretation we notice that Eq. (6)
can be rewritten as

γ̇ = φMWσ + JMW σ̇, (17)

where JMW = 1/GMW is the Maxwell compliance and φMW = 1/ηMW is the Maxwell fluidity. Hence, the Maxwell
compliance of the material is the shear storage compliance obtained by the SAOStress experiment while the Maxwell
fluidity of the material is the viscous dynamic fluidity obtained in the same experiment.

2.3 Comments on SAOS

When we compare the results obtained from the SAOStrain and SAOStress experiments, we notice that the interpre-
tation of SAOStrain dynamic modulus, G′ and G′′, provided by the Kelvin-Voigt framework, represented by Eqs. (9) and
(10), is simpler and more intuitive than the one provided by the Maxwell framework, represented by Eqs. (11) and (12).
This conclusion is not only based on the simpler form of Eqs. (9) and (10), but also on the terminology given to G′ - stor-
age modulus - andG′′ - loss modulus, since the Hookean-elastic representative parameter, elastic modulus, coincides with
the storage modulus and the Newtonian-viscous representative coincides with the dynamic viscosity. On the other hand,
the Maxwell framework is more appropriate to interpret SAOStress dynamic storage compliance, J ′ and dynamic fluidity
φ′, since they are exactly the reciprocal of the Maxwell shear modulus and Maxwell shear viscosity. The importance of
this result cannot be overemphasized. The tradition on using oscillatory shear flows in the linear viscoelastic regime and
on using Maxwell and Kelvin-Voigt models are, in fact, oscillatory and non-oscillatory versions of the same paradigm,
namely that the response of the material can be decomposed into two additive parts, one that is elastic and the other that
is viscous. As will become clear with the analysis below of LAOStrain and LAOSstress experiments, the interpretations
given so far, for the results obtained from subjecting the material large amplitude oscillatory shear, are not free from
this paradigm. Since is questionable that the elastic and viscous responses can be split into additive parts, breaking this
paradigm has far reaching consequences for richer interpretations of LAOS experiments. When a Maxwell material can
be subjected to a SAOStrain experiment and a Kelvin-Voigt material can be subjected to a SAOStress experiment, both
results can be seen as somehow odd, the results exposes a strange feeling that one material fits to one experiment and does
not fit to the other, while the other fits the other and does not fit the one. What we can conclude is that there is no elastic
modulus of a material which is non-Hookean, unless a model is used as framework. And there is no viscosity of a material
which is non-Newtonian, unless a model is used as framework. However, there are countless examples in the literature of
the usage of the term the elastic modulus of the material, referring to a complex material with a specific model in mind.
In particular, it is common to relate G′ with the elastic modulus and G′′ with a “viscous modulus". In other words, we can
find in the literature examples of usage of the Kelvin-Voigt framework to interpret SAOStrain data without being explicit
on this point. This happens because of the long tradition on SAOStrain experiments.
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2.4 LAOSstrain

In light of what was discussed in the last subsection, we can think of the SD decomposition of Cho et al. (2005)
presented in detail previously, as a LAOStrain perspective of the paradigm described, i.e. the response of the inputed
strain, the stress, is split into two additive parts: σ′, the elastic part of the stress, and σ′′, the viscous part of the stress. As
shown in SAOStrain, the Kelvin-Voigt framework is suitable for interpreting such decomposition because it is founded in
the same grounds: elastic and viscous contributions are additive parts of the total stress. Hence, we can use the Kelvin-
Voigt MBFR and identify the Kelvin-Voigt elastic modulus,GKV , and viscosity, ηKV of the material which was subjected
to a LAOStrain experiment with the strain input γ = γo sinωt and has σ′and σ′′ as stress responses. In this connection,
we can equal the elastic contribution of the Kelvin-Voigt model to the elastic contribution of SD, as

GKV γ = σ′ ⇒ GKV =
σ′

γ
= Γ′, (18)

and equal the viscous contribution of the Kelvin-Voigt model to the viscous contribution of SD, as

ηKV γ̇ = σ′′ ⇒ ηKV =
σ′′

ωγ
= Γ′′, (19)

Here we come to an important conclusion regarding the interpretation of the SD. The SD-generic dynamic moduli are
exactly the Kelvin-Voigt elastic and viscous parameters. Hence, the analysis conducted by Cho et al. (2005) can be seen,
from the perspective of MBFR, as choosing the Kelvin-Voigt model as a framework for interpreting nonlinear viscoelastic
data.

Corroborating these ideas, Ewoldt et al. (2008) have related the SD method to the FT and CF in a LAOStrain response
of the strain input γ = γo sinωt as

σ′ = γo
∑
n odd

G′n(ω, γo) sin nωt = γo
∑
n odd

en(ω, γo) Tn(γ/γo), (20)

and

σ′′ = γo
∑
n odd

G′′n(ω, γo) cos nωt = γ̇o
∑
n odd

vn(ω, γo) Tn(γ̇/γ̇o). (21)

Therefore, they have found what are the Fourier and Chebyshev versions of the same paradigmatic approach, namely to
divide the material response into two additive parts, elastic and viscous ones. In fact, even before Eqs. (20) and (21) were
stated, we could find in the literature the linking between the harmonics G′n(ω, γo) and elasticity while G′′n(ω, γo) are
frequently linked to viscous effects, the prime and double prime signals associated to the letter G indicate this relation.
Aligned with this concept, the letters chosen for the Chebyshev coefficient are e from “elastic" and v from “viscous".

Analogously to what was done with the SD of Cho et al. (2005) we can use the Kelvin-Voigt MBFR and identify the
relation between Kelvin-Voigt elastic modulus, GKV , and viscosity, ηKV with the Fourier harmonics and the Chebyshev
coefficients of the material which was subjected to a LAOStrain experiment with the strain input γ = γo sinωt as the
equations below

GKV γ = γo
∑
n odd

G′n(ω, γo) sin nωt = γo
∑
n odd

en(ω, γo) Tn(γ/γo) (22)

and

ηKV γ̇ = γo
∑
n odd

G′′n(ω, γo) cos nωt = γ̇o
∑
n odd

vn(ω, γo) Tn(γ̇/γ̇o) (23)

Hence, we have a connection between the Kelvin-Voigt elastic modulus of the material and the Fourier or Chebyshev
coefficients

GKV =
∑
n odd

G′n(ω, γo) cossecωt sin nωt =
∑
n odd

en(ω, γo) cossecωt Tn(γ/γo) (24)

Analogously, for the Kelvin-Voigt viscosity of the material we arrive at

ηKV =
∑
n odd

η′n(ω, γo) secωtcos nωt =
∑
n odd

vn(ω, γo)secωt Tn(γ̇/γ̇o) (25)

In the limit of the linear viscoelastic behavior where the harmonics higher than the unity are not significant to the response
description, the first harmonic tends to the corresponding linear viscoelastic dynamic modulus, the SAOStrain result is
recover, i.e. GKV = G′ and ηKV = η′. In fact we can write Equations (24a) and (25a) as

GKV = G′1(ω, γo) +
∑

n=3, odd

G′n(ω, γo)
sin nωt

sinωt
(26)
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ηKV = η′1(ω, γo) +
∑

n=3, odd

η′n(ω, γo)
cos nωt

cosωt
(27)

Equations (24) and (25) give another interpretation for the harmonics of the Fourier transform and the coefficients of the
Chebyshev representations. Equation (24a) can be rewritten to explicit the coefficients of a Fourier series applied to GKV
as

GKV =
∑
p even

GKV (p)(ω, γo) cos pωt (28)

where the relation between GKV (p) and G′n is

GKV (0)(ω, γo) =
∑
n odd

G′n(ω, γo) (29)

GKV (p)(ω, γo) =
∑

n=p+1,n odd

2G′n(ω, γo) (30)

while Eq. (25a) can be rewritten to explicit the coefficients of a Fourier series applied to ηKV given by

ηKV =
∑
p even

ηKV (p)(ω, γo) cos pωt (31)

where the relation between ηKV (p) and η′n is

ηKV (0)(ω, γo) =
∑
n odd

(−1)
n−1
2 η′n(ω, γo) (32)

ηKV (p)(ω, γo) =
∑

n=p+1,n odd

(−1)
n−p−1

2 2η′n(ω, γo) (33)

Another interesting result is if we compute the rheological coefficients defined by Eq. (1) from the Kelvin-Voigt MBFR
perspective. In this case we have that

G′M ≡
dσ

dγ

∣∣∣∣
γ=0

=
dσ′

dγ

∣∣∣∣
γ=0

= GKV |γ=0 +

[
dGKV
dγ

γ

]
γ=0

⇒ G′M = GKV (0) =
∑
n odd

nG′n (34)

and

G′L ≡
σ

γ

∣∣∣∣
γ=±γo

= GKV |γ=±γo + ηKV
γ̇

γ

∣∣∣∣
γ=±γo

. (35)

⇒ G′L = GKV (±γo) =
∑
n odd

(−1)
n−1
2 G′n (36)

Where we have used Eqs.(28)-(30) in order to produce the last equalities of Eqs. (34) and (36)
Therefore, other interpretations for G′M and G′L are obtained in this methodology. These known quantities are simply

the Kelvin-Voigt elastic modulus of the material evaluated at γ = 0 and γ = ±γo. So the variable S defined in Ewoldt
et al. (2008) can be written as

S ≡ G′L −G′M
G′L

=
GKV (±γo)−GKV (0)

GKV (±γo)
. (37)

Its association with the nonlinearities of the material becomes very clear in this new perspective. As shown in the SAOS-
train analysis, the linear viscoelastic regime is well characterized by a Kelvin-Voigt elastic modulus that is independent
from the deformation, and therefore, GKV (±γo) = GKV (0).

The same procedure can be applied to η′M , η′L, and T ≡ η′L−η
′
M

η′
L

(Ewoldt et al., 2008)

η′M ≡
dσ

dγ̇

∣∣∣∣
γ̇=0

=
dσ′′

dγ̇

∣∣∣∣
γ̇=0

=
dηKV
dγ̇

γ̇

∣∣∣∣
γ̇=0

+ ηKV |γ̇=0
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η′M ⇒= ηKV (0) =
∑
n odd

(−1)
n−1
2 nη′n (38)

η′L ≡
σ

γ̇

∣∣∣∣
γ̇=±γ̇o

= GKV
γ

γ̇

∣∣∣∣
γ̇=±γ̇o

+ ηKV |γ̇=±γ̇o , (39)

η′L ⇒ ηKV (±γ̇o) =
∑
n odd

η′n (40)

T ≡ η′L − η′M
η′L

=
ηKV (±γ̇o)− ηKV (0)

ηKV (±γ̇o)
(41)

2.5 LAOStress

The work of Dimitriou et al. (2013) shows that, for the material analyzed, namely a carbopol gel, it is more interesting
to separate the strain into an elastic contribution and a non-elastic one than to separate the stress into elastic and non-elastic
parts. They called the non-elastic part a plastic part instead of viscous part. Their first attempt to model the carbopol gel
was based on the paradigm here highlighted, but coming from a different input, i.e. the same rationale that make one define
the linear viscoelastic compliances J ′, J ′′ of SAOStress, was adapted to a LAOStress context. The Fourier Transform of
the output of a LAOStress experiment with an input of the form σ = σo cosωt is given by

γ = σo

[∑
n odd

J ′n(ω, σo) cos nωt +
∑
n odd

J′′n(ω, σo) sin nωt,

]
(42)

Dimitriou et al. (2013) created a Strain Decomposition, a strain version of the SD made by Cho et al. (2005), by
dividing the strain output from a LAOStress experiment into two additive parts, γ′ and γ′′, which were called apparent
elastic strain and apparent plastic strain, respectively. They used the analogous symmetry assumptions, that γ′ is a single-
valued function of the stress σ and γ̇′′ is a single-valued function of σ. Combining this decomposition with the Fourier
and Chebyshev representations of a LAOStress input of σ = σo cosωt they arrive into

γ′ = σo
∑
n odd

J ′n(ω, σo) cos nωt = σo
∑
n odd

cn(ω, σo) Tn(σ/σo), (43)

and

γ̇′′ = σo
∑
n odd

nωJ ′′n(ω, σo) cos nωt = σo
∑
n odd

fn(ω, σo) Tn(σ/σo), (44)

In order to proceed and conduct the LAOStress-Maxwell analysis, which is the counterpart of the LAOStrain analysis
conducted in the last subsection, we need to take the time derivatives of σ and γ′, which are given by

σ̇ = −ωσo sinωt (45)

γ̇′ = −σo
∑
n odd

nωJ ′n(ω, σo) sin nωt = σo
∑
n odd

fn(ω, σo) Ṫn(σ/σo). (46)

From Eq. (17) we have that

JMW σ̇ = γ̇′; φMWσ = γ̇′′ (47)

Therefore,

JMW =
∑
n odd

nJ ′n(ω, σo)
sin nωt

sinωt
= J ′1(ω, σo) +

∑
n=3 odd

nJ ′n(ω, σo)
sin nωt

sinωt
. (48)

φMW =
∑
n odd

nωJ ′′n(ω, σo)
cos nωt

cosωt
= φ1(ω, σo) +

∑
n=3 odd

nφ′n(ω, σo)
cos nωt

cosωt
. (49)

Equation (??) can be rewritten so as to explicit its Fourier coefficients as

JMW =
∑
p even

JMW (p)(ω, σo)cos pωt. (50)
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where JMW (p) is given by

JMW (0) =
∑
n odd

nJ ′n(ω, σo), (51)

JMW (p) =
∑

n=p+1,n odd

2nJ ′n(ω, σo). (52)

Analogously, Eq. (??) can also be rewritten in a Fourier form as

φMW =
∑
p even

φMW (p)(ω, σo)cos pωt. (53)

where φMW (p) is given by

φMW (0) =
∑
n odd

(−1)
n−1
2 nφ′n(ω, σo), (54)

φMW (p) =
∑

n=p+1, odd

(−1)
n−p−1

2 nφ′n(ω, σo), (55)

2.6 Comments on LAOS

The first thing to notice from the analysis above is that there is a tendency of interpreting SAOStrain and LAOStrain
experiments from a Kelvin-Voigt framework while SAOStress and LAOStress from a Maxwell framework. From the
Fourier-Chebyshev perspective, the major difference between the coefficients G′n − G′′n and J ′n − J ′′n , or en − vn and
cn− fn is that they are defined in different tests, G′n−G′′n and en− vn in strain input tests and J ′n−J ′′n and cn− fn. It is
worth noticing that this tendency is based on the paradigm here stated and repeated, that the viscoelastic response can be
decouple into two additive parts one elastic and the other non-elastic. What we want to make clear is that, although this
approach has no undesirable consequences in the linear viscoelastic regime, it seems not to be consistent when a complex
material is subjected to nonlinear input as is done in LAOS. When we substitute the Kelvin-Voigt parameters, GKV and
ηKV obtained from a SAOStrain experiment, Eqs. (9) and (10), into the Kelvin-Voigt model, represented by Eq. (5) we
have the same stress response that is obtained if we substitute the Maxwell parameters, Eqs. (11) and (12), into Eq. (6).
The same reasoning applies to SAOStress. Hence, the linear viscoelastic regime is not capable of discriminating the two
materials.

The results reported by Dimitriou et al. (2013) show an interesting connection between viscous and plastic effects.
This fact is represented by calling the non-elastic response of the material, usually termed viscous term, they used the
terminology plastic, using a solid-mechanics oriented choice, since in solid mechanics, the phenomenon associated to
dissipation is linked to plasticity. In other words, the found that, for the carbopol gel investigated, which presents a yield
stress character, viscous and plastic features are coupled in the non-elastic term. As deeply discussed by de Souza Mendes
and Thompson (2012), this finding is in clear opposition to some models that merge elastic and yield stress features in the
same term (called Type I models), and is in clear accordance to other models that use the same coupling (called Type II
models).

3. The lack of physical significance of the total strain, γ

Maxwell

τ +
η

G
τ̇ = ηγ̇ (56)

t < 0, τ = τ̇ = γ = γ̇ = 0
t = 0+, γ = γA

⇒ τ(t) = GγA exp

(
−G

η
t

)
(57)

From the mechanical analog, γe = γA exp
(
−G
η t
)

. After a time t = t1

⇒ τ(t1) = GγA exp

(
−G

η
t1

)
(58)

At this point, the material has “forgotten" its original configuration. The unrecoverable strain is given by

γp = γA

[
1− exp

(
−G

η
t1

)]
(59)
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This deformation is the one that remains when the stress is removed, i.e. is the preferred configuration of the material.
Let us suppose, at time t+1 we impose that the material goes from γ = γA to γ = γA + γB , γB 6= γA. This implies that

τ(t) =

[
GγA exp

(
−G

η
t1

)
+ GγB

]
exp

[
−G

η
(t− t1)

]
(60)

and

γe =

[
γA exp

(
−G

η
t1

)
+ γB

]
exp

[
−G

η
(t− t1)

]
(61)

and

γp = γA + γB −
{[
γA exp

(
−G

η
t1

)
+ γB

]
exp

[
−G

η
(t− t1)

]}
(62)

Hence, the level of stress is dependent on time t1, the amount of time that we keep the material at a constant deformation,
while the total deformation is γ = γA + γB .

4. BEYOND MAXWELL AND KELVIN-VOIGT MBFR

4.1 The Jeffreys framework

As the analysis above has shown, Maxwell and Kelvin-Voigt models were indirectly used to interpret LAOS data.
The main quantities used in the literature have a clear interpretation when we apply the Maxwell-MBFR to a stress input
response and a Kelvin-Voigt-MBFR to a strain input.

There are some ways of combining springs and dashpots in order to produce a one step further framework, departing
from the Maxwell or Kelvin-Voigt models in such a way that it can reduce to one or the other, depending on the chosen
limiting values for the modulus and/or viscosities. One interesting one that was shown to provide an excellent performance
in some cases was the one proposed by de Souza Mendes et al. (2013). It is an example of application of the present ideas.
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