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Abstract. This paper presents the application of a variational method to the classical hydrodynamic impact problem 
within the so-called Generalized von Kármán Model (GvKM). The extended Lagrange equation, valid for variable 
mass systems enables one to consistently treat the impact problem by considering the added mass tensor defined in the 
bulk of the liquid and excluding the jets. The solution of the nonlinear dynamic equation of the impacting motion 
depends on the determination of the added mass tensor and its derivative with respect to time at each integration time 
step. This is done through a variational method technique that leads to a second-order error approximation for the 
added mass if a first-order error approximation is sought for the velocity potential. This technique was detailed in a 
previous work by the authors. An application of the variational method for a prolate ellipsoid is here addressed. 
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1. INTRODUCTION 
 

First studies of the hydrodynamic impact problem began in the 30s with the works of von Kármán (1929) and 
Wagner (1931), motivated by studying the impact of seaplane floats during landing onto the water. They studied the 
impact problem by approximating the impact body by a two-dimensional flat disc, considered to be collapsed onto the 
plane 0=z . In this approach, the contact surface solid-liquid, which is three-dimensional in its original form, is 
considered as a contact plane. Furthermore, Wagner took into account the free surface elevation, i.e., the piled-up water 
effects; which are not considered in the von Kármán approach.  

Besides von Kármán and Wagner approaches, different models of impact have been studied, such as the Generalized 
von Kármán model (GvKM), the Generalized Wagner Model (GWM), and the Modified Logvinovich Model (MLM). 
In the GvKM, the exact body boundary conditions are fulfilled but the wet correction, i.e the free surface elevation, is 
not taken into account. This model has been recently used by Malenica and Korobkin (2007) for ship hulls during water 
impact. The GWM is considered as a generalization of the Wagner model, where the body boundary condition is 
exactly satisfied and the condition of the free surface is imposed on the horizontal lines at the splash-up height; see 
Zhao, et al., 1996, Faltinsen and Chezhian (2005) and Korobkin (2004). In the MLM, the body boundary condition is 
satisfied at 0=z , but the exact body shape is considered a posteriori in the calculation of the hydrodynamic loads; see 
Malenica and Korobkin (2007), and Korobkin and Malenica (2005). 

In the context of a GvKM, the purpose of the present paper is to discuss the application of a variational numerical 
method, published in Santos, et al., 20131, based on the previous work by Pesce and Simos (2008), to address the 
hydrodynamic impact problem of a prolate ellipsoid (spheroid) during its vertical entrance into the water. According to 
Santos, et al., 2013, the potential problem of hydrodynamic impact, characterized by the dominance of inertial forces, is 
formulated by assuming the liquid surface as equipotential, what allows the analogy with the infinity frequency limit in 
the usual free surface oscillating floating body problem. The vertical impact force is then calculated from the added 
mass variation with the penetration depth, obtained through the variational method. In this approach, the body boundary 
conditions are exactly satisfied, instead of approximating the impact body by an equivalent flat plate, what implies that 
the original three-dimensional shape of the body is taken into account. However, the effects of the local free surface 
elevation are not considered in the present work. 

An account of the relative importance of buoyancy forces is given and illustrated through a simple free fall example. 
  

 
2. MATHEMATICAL FORMULATION 
 

Consider that the fluid is initially at rest. The initial instant 0=t  is defined as the instant when the body touches the 
free surface at a single point, taken as the origin of a Cartesian coordinate system Oxyz . The fluid is assumed inviscid 
and the flow irrotational, such that a potential scalar function, ),,,( tzyxφ , defines the velocity field. Body forces are 

                                                           
1 In that paper, the technique was detailed and applied to other axisymmetric bodies (sphere and oblate ellipsoid). 
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assumed to be negligible. The usual formulation of the problem follows from the consideration of a) the 
incompressibility condition of the liquid, b) the impermeability condition of the body, c) the kinematic and dynamic 
boundary conditions of the free surface, d) the evanescence condition for the velocity potential ),,,( tzyxφφ =  and for 
the free surface elevation ),,(z tyxη= , and the initial condition for both. Further details about the mathematical 
formulation can be found in Korobkin (1988), Faltinsen (1990) and Casetta (2004). Within the Generalized von Kármán 
Model, the formulation of the problem can be simplified as follows; see Fig. 1 for definitions of V , BS  and FS . 

 

 
 

Figure 1. Sketch of the three-dimensional contact area in the Generalized von Kármán Model (GvKM).  
Adapted from Santos, et al., 2013. 
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where convective terms were neglected in Eqs. (3) and (4). Equation (4) is valid except at the intersection line of the 
body with the free surface. Therefore, the vertical hydrodynamic impact force is given by 
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3. NUMERICAL PROCEDURE 
 

The solution of the nonlinear dynamic equation of the impacting motion depends on the determination of the added 
mass tensor and its derivative with respect to time at each integration time step. The potential problem of hydrodynamic 
impact, characterized by the dominance of inertial forces, is here formulated by assuming the liquid surface as 
equipotential, what allows the analogy with the infinity frequency limit in the usual free surface oscillating floating 
body problem (see Newman, 1978). Thus, within the GvKM, recalling the classical result that the added mass of the 
impacting body can be written in terms of that corresponding to a double body, its value can be calculated at each 
instant of time, see Newman (1978) and Fig. 2. The added mass of the double body is associated to the penetration 
depth (and wetted portion) of the impacting body, as shown in Fig. 2(b),(c). 
 

 

  
(a) 

 

(b) 

 

(c) 

Figure 2. Sketch of the computational strategy: (a) before impact; (b) body impacting the water surface;  
(c) double body, which is symmetric to the plane 0=z . 

 
Pre-calculation and a former interpolation approach was adopted to calculate the added mass, instead of solving the 

problem at each instant of integration. Thus, for each penetration depth, the added mass coefficient of the double body 
is calculated by the variational method to potential flows around three-dimensional bodies in unbounded fluid, see 
Pesce and Simos (2008). This technique leads to a second-order error approximation for the added mass if a first-order 
error approximation is sought for the velocity potential. This method is an example of desingularized numerical 
techniques, through which the velocity potential is approximated in a sub-space of finite dimension, formed by trial 
functions derived from elementary potential solutions, such as poles, dipoles, and vortex rings, which are placed inside 
the body. Dipoles and rings of dipoles are employed hereafter, as trial functions; see Appendix A. A summary of the 
variational method presented by Pesce and Simos (2008) is presented in Appendix B, where the complete formulation 

ζ
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of the variational method can be found. Further details concerning its application to the impact problem are given in 
Santos, et al., 2013. 

With the added mass function, interpolated from pre-calculated values for a range of predefined penetration 
positions *ζ , the equation of motion for the vertical impact problem can be solved. Through the viewpoint of the 
Lagrangian formalism, the vertical impact force acting upon a rigid body is given by 
 

( )ζbM
dt

d
FI −= , (8) 

 
where bM  is the added mass defined within the bulk of the liquid; i.e., excluding the jets; see Casetta, et al., 2011. On 
the other hand, the force applied to the body is given by 
 

dt

d
mFI

ζ
= , (9) 

 
where m  is the mass of the body. Equations (9) and (8) lead to the following equation of motion 
 

( ) 02 =++ ζ
ζ
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d
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b . (10) 

 
Let the dimensionless time, position, and added mass be defined as 

 
btUt /0

* = ; b/* ζζ = ; Dbb mMM /* = , (11) 
 
where b  is the maximum radius of the impacting body, Dmm /=β  is the specific mass and Dm  is the mass of liquid 

displaced by the totally immersed body; 0U  is the vertical velocity at the very first instant of impact, −= 0*t . 
Equation (10) takes, then, the dimensionless form, 
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Equation (12), integrated under initial conditions 1)0(  ;0)0( ** == ζζ  , leads to the determination of the impact 

force. Notice, from (11), that velocity is normalized by 0U , acceleration by 2
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If the buoyancy force is considered, the equation of motion is readily deducible as 
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with  
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ζµ = , (14) 

 
where g  is the acceleration of gravity and )(ζµD  the mass of liquid displaced as function of the penetration depth of 
the body. Let, as in Pesce, et al., 2006, an impact Froude number be defined as 
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Thus, Eq. (13) can be written in the following form, 
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The buoyancy effect is then related to the inverse of the impact Froude number squared (usually a very high value), 

what makes it relatively small if compared to the inertial effects at the very beginning of the water entry problem. This 
will be illustrated. In fact, the ratio between inertia and buoyancy forces may be shown to be of order 

1)( 2 >>≈ RBI FOFF ; Pesce, et al., 2006. If, e.g., the impacting body is dropped (in vacuum) from the rest to the free 

surface, from a height H , such that gHU 20 = , the impact Froude number can be simply calculated as 
 

b

H
FR

2
= , (17) 

the square of which may take high values. 
 
4. RESULTS 
 
This section aims at illustrating further applications of the variational method to the vertical impact problem. The three-
dimensional impact of a prolate ellipsoid is here taken. The application of the variational method to the vertical impact 
of an oblate ellipsoid was presented in a previous work in Santos, et al., 2013. The results were separated into two 
sections: the calculation of the added mass coefficient through the variational method and the integration of the equation 
of motion during the vertical impact of the body. Numerical results were obtained by routines programmed in Matlab®. 
 
4.1 Added mass results for a prolate ellipsoid 
 

The equation of the impacting prolate ellipsoid of revolution, centered at the origin of a Cartesian coordinate system 
is given by 
 

1
2

2

2

2

2

2

=++
b

z

a

y

a

x
, (18) 

 
where a  is the horizontal and b  the vertical semi-diameters, respectively, and ab > . 

 
 

Figure 3. Prolate ellipsoid ( )67.16.0/1/ ≅=ab , being a the semi-diameter and b on the axis of revolution z . 

ISSN 2176-5480

2783



Flávia M. Santos, Celso P. Pesce 
Further Applications of a Variational Method to the Vertical Hydrodynamic Impact of Axisymmetric Bodies 
 

Figure 3 shows geometric details of the body. For this geometry, the mass of liquid displaced as function of the 
penetration depth of the body (see Eqs. (13) and (14)) is given by 

 

( )ζζ
ρπ

ζµ −= b
b

a
D 3

3
)( 2

2

2

. (19) 

 

Predefined penetration depths are considered, with 5.00 * ≤< ζ  and b/* ζζ = . Although the impact force 

reaches its maximum value at the initial stage, i.e., at small penetration depths, moderate values for *ζ  were also 
considered, for both, completeness, and to illustrate the numerical convergence process as function of the body 
“roundness”.  

 
The choice of the trial functions is based on the physics of the flow pattern around the double body. Since the 

elementary solution of a dipole leads to the flow due to a sphere, the systematic procedure used in this work is to 
include a single vertical dipole at the origin in order to emulate the flow around an ‘inscribed sphere’ with radius equal 
to the penetration depth, ζ , and dipoles placed along circular rings – or, simply, rings of dipoles - to represent the 

whole double body surface. All trial functions are placed at the symmetry plane 0=z . The set of TFN  trial functions is 

composed by a single vertical dipole and a number of ( )1−TFN  circular concentric discrete rings of dipoles; see Fig. 4 
for details. Note that continuous rings of dipoles could be also employed or even higher order elementary singularity 
lines. The vertical dipole is positioned at the origin and the rings of dipoles placed around the symmetry axis. The radii 
of the rings of dipoles, jR , ( )11 −≤≤ TFNj , is given by ( )[ ] cj rRjR ∆−+= 1045.0 , where ( ) 93.02 =−∆ TFNR  and 

cr  is the double body radius, which is associated with the considered penetration depth, see Fig. 2(b),(c). Therefore, the 

radius of the rings ranges from cr%5.4  to cr%5.97 .  
 
 

 
 

Figure 4. Sketch of the placement of the trial functions at the plane 0=z . The symbol ↕ represents a single vertical 
dipole and the circular ring of discrete dipoles is symbolized by the dotted line. 

 
Obviously, a systematic inclusion of rings of discrete dipoles can improve the results because the emulated flow 

approximates that one around the exact double body surface. This can be seen in Fig. 5, which illustrates a convergence 

study for the dimensionless added mass, 
ba

M
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function of TFN . The bcε  parameter is given by  
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where φ~  is the numerical solution obtained with the variational method. This can be viewed as the error of the weak 
solution (obtained through the variational method) regarding the satisfaction of the boundary condition on the body 
surface; see Santos, et al., 2013. 
 
 

 

 

 

          (a)               (b) 
 

Figure 5. Numerical results and convergence study for a prolate ellipsoid )67.16.0/1/( ≅=ab , as function of TFN  
(the number of trial functions) (a) dimensionless added mass; (b) weak solution boundary condition error. The legend in 

(b) is also used in figure (a). 
 

 

 

 

 
        (a)               (b) 

 
Figure 6. Dimensionless added mass for a prolate ellipsoid )67.16.0/1/( ≅=ab as function of the dimensionless 

penetration depth, *ζ : (a) full penetration range; (b) small penetration range and power fitting. 
 

Figure 5(a) shows that the convergence is really fast. For all penetration depths, few trial functions are necessary for 
a satisfactory convergence to the added mass values. Moreover, a systematic inclusion of inner equi-spaced rings of 
dipoles improves the result by reducing the error bcε ; see Fig. 5(b). Recall that the error in the added mass is of order 

)
2( bcO ε ; Pesce and Simos (2008). The errors in the converged values of added mass are then less than 2,5%.  Optimal 
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values for bcε  are obtained (Fig. 5(b)) and the corresponding added mass results are presented as a function of *ζ  in 

Fig. 6(a). A power fitting for )( ** ζbM  is then determined, for small penetration depths, as shown in Fig. 6(b), from 

which the derivative )( *
*

*

ζ
ζd

dMb  may be promptly obtained. The fitted power functions ))();(( ***
*

*

ζζ
ζd

dMb
bM  are then 

used during the integration of the equation of motion, Eq.(12), at each time step. 
 
4.2 Vertical impact force 
 

With the functions )( ** ζbM  and )( *
*

*
ζ

ζd

dM b  determined, Eq. (12) is integrated under initial conditions 0)0(* =ζ  

and 1)0(* =ζ . Figure 7 shows position, velocity and acceleration for different values of specific mass, β . Notice that, 
if no buoyancy effect is considered, nondimensional acceleration and impact force are equal to each other, i.e., 

*2
0

1* ζ== −−
IDI bFUmF . 

 
 

 

 

 

          (a)            (b) 

 

            (c) 
 
Figure 7. Dimensionless penetration, velocity and acceleration for an impacting prolate ellipsoid )67.16.0/1/( ≅=ab   

vs. dimensionless time, for three values of specific mass. Equation of motion without buoyancy force, Eq. (12). 
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The buoyancy force effect is taken into account in Fig. 9. The prolate ellipsoid is supposed to be dropped from rest, 
from a height equal to the vertical (major) semi-axis (H/b=1), as depictured in Fig. 8. As anticipated, the buoyancy 
effect is indeed small, even for a relatively small dropping height. 

 

 
Figure 8. The prolate ellipsoid dropped from the rest. 

 
 

 

 

 

          (a)            (b) 

 

           (c) 
 

Figure 9. Dimensionless penetration, velocity and acceleration of an impacting prolate ellipsoid )67.16.0/1/( ≅=ab   
vs. dimensionless time, for three values of specific mass. Equation of motion with and without buoyancy force; 

Eqs. (13) and (12), respectively. 
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5. CONCLUSIONS 
 

This paper presented new results of the application of a variational method to a vertically impacting prolate 
ellipsoid, formulated under the so-called Generalized von Kármán Model (GvKM). Following a previous work by the 
authors, Santos, et al., 2013, and using rings of discrete dipoles as trial functions, the added mass of the body was 
determined, after a numerical convergence study, and the equations of motions integrated. Illustrative examples were 
given and the relative effect of buoyancy forces addressed. Further studies might include a comprehensive calculation 
of a whole family of ellipsoids and improvements regarding the proper consideration of the so-called wet-surface 
correction. 
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APPENDIX A. TRIAL FUNCTIONS 
 

In the present study, dipole and rings of dipoles are employed as trial functions. In polar cylindrical coordinates, 
they can be respectively written as 
 

Dipole (see Lamb, 1932) 
 

( ) z
zr

a
azr

2/3

22
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2

1
;, 









+
=φ . (A.1) 

 
Rings of dipoles 

 
The velocity potential of the i-th dipole displaced (in r′ ) at the plane 0=z  with respect to the origin of the 

coordinate system, see Fig. 10 , is given by 
 

 
 

Figure 10. Sketch of the displaced dipole at the plane 0=z . Adapted from Santos, et al., 2013. 
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and the potential of the ring of dipoles (with radius r′ , see Fig. 10) can be written as a sum of dipoles displaced with 
respect to the origin (see Eq. (A.2)). This leads to 
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;,;, φφ , (A.3) 

 
where dn  is the number of dipoles that represents the discrete ring. In Eqs. (A.2) and (A.3), 

( )ii rrrrr ϕϕ ′−′−′+=′′ cos2222  and zz ≡′′ . The rings of discrete dipoles which are used in this work are positioned at 

the plane 0=z , with radius r′ and 
( )

d
i n

i 12 −
=′

π
ϕ . 

 
APPENDIX B. FORMULATION OF THE VARIATIONAL METHOD 
 

See Pesce and Simos (2008), for details. Let )(~ rφ
 
be a numerical approximation of )(rφ and { }NjTj ,...,1);( =r

 
a 

linearly independent set of trial functions which satisfy the Laplace equation and the proper evanescence condition. 
Writing  
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∑
=

=
N

j
jjTq

1

)()(~ rrφ , (B.1) 

 
and from Eqs. (1)-(6), the weak equation is presented as 
 

)V(    ;  )(),( )1(
2WVG ∈∀= ψψψφ , (B.2) 

 
where  
 

∫=
BS n SUV d)( ψψ

          . 

∫ ⋅∇=
BS

SG d),( ψφψφ n  
(B.3) 

 
The weak equation corresponds to a linear algebraic system in the unknown coefficients { }Njq j ,...,1; = , i.e. 
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