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Abstract. This paper deals with the theoretical aspects concerning linear elastodynamic of a damped structure composed
of two main damped substructures perfectly connected through interfaces by a linking damped substructure. A reduced-
order model is constructed using the free interface elastic modes of the two main substructures and an appropriate
elastostatic lifting operator related to the linking substructure.
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1. INTRODUCTION

In this paper, we are interested in the construction of a reduced-order model of a damped structure composed of two
main damped substructures perfectly connected through interfaces by a linking damped substructure. Such a reduced-
order model allows the frequency response function calculations to be carried out for this structure subjected to prescribed
forces. More precisely, this paper is devoted to theoretical aspects of substructure-substructure coupling through a third
linking substructure using a dynamic substructuring method and a modal reduction procedure.

For linear structural vibrations, dynamic substructuring techniques have been widely developed in the literature us-
ing fixed-interface modes or free-interface modes (completed by static boundary functions, attachment modes, residual
flexibility, etc.) of each substructure. For conservative structures, we refer the reader, for example, to Guyan (1965);
Hurty (1965); Craig and Bampton (1968); MacNeal (1971); Rubin (1975); Morand and Ohayon (1995); Craig and Kur-
dila (2006), and for damped structures, to Klein and Dowell (1974); Hale and Meirovitch (1980); Leung (1993); Ohayon
and Soize (1998). Some papers are based on a mixed formulation using a Lagrange multiplier in order to impose the
linear constraints on the coupling interfaces (Farhat and Geradin, 1994; Ohayon et al., 1997; Park and Park, 2004). A
general synthesis of the various techniques can be founded in de Klerk et al. (2008). Concerning dynamic substructuring
with linking substructures, using simplified hypotheses on the linking substructures behavior, we refer the reader to the
stiffness coupling method introduced by Kuhar and Stahle (1974), which is at the origin of the present paper. In addition,
linking substructures model correspond to a rough modeling of the real linking systems and uncertainties induced by
modeling errors must be introduced (Mignolet et al., 2013).

2. DISPLACEMENT VARIATIONAL FORMULATION FOR TWO SUBSTRUCTURES CONNECTED BY A
LINKING SUBSTRUCTURE

2.1 Description of the mechanical system and hypotheses

We consider the linear vibration of a free structure, around a static equilibrium configuration which is considered as a
natural state (for the sake of brevity, prestresses are not considered but could be added without changing the presentation),
submitted to prescribed external forces which are assumed to be in equilibrium at each instant. The displacement field
of the structure is then defined up to an additive rigid body displacement field. We are only interested in the part of
the displacement field due to the structural deformation. The structure Ω is composed of two substructures Ω1 and Ω2

perfectly connected through interfaces Γ1L and Γ2L by a linking substructure ΩL (see Fig. 1). We then have Ω =
Ω1 ∪ ΩL ∪ Ω2. The boundaries are such that ∂Ω1 = Γ1L ∪ Γ1, ∂Ω2 = Γ2L ∪ Γ2, ∂ΩL = Γ1L ∪ Γ1L ∪ ΓL and
∂Ω = Γ1 ∪ΓL ∪Γ2. Each substructure is a three-dimensional dissipative elastic medium in linear vibration. A frequency
domain formulation is used, the convention for the Fourier transform being u(ω) =

∫
R e
−iωt u(t) dt where ω denotes the

circular frequency, u(ω) is a vector in C3 and u(ω) its conjugate.
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Figure 1. Two substructures Ω1 and Ω2 connected with a linking structure ΩL

2.2 Notation for a substructure Ωr

For r in {1, L, 2}, the external prescribed body and surface force fields applied to Ωr and Γr are denoted by g
Ωr

and
g

Γr
respectively. Let ur = (ur1, u

r
2, u

r
3) be the displacement field at each point x = (x1, x2, x3) in cartesian coordinates.

The set of admissible displacement fields with values in C3 (resp. in R3) is denoted by CΩr
(resp. RΩr

) and is used for
dissipative problems (resp. associated conservative problems). For substructure Ωr, the test function (weighted function)
associated with ur is denoted by δur ∈ CΩr

(or in RΩr
). From a mathematical point of view, for r = 1, L, 2, RΩr

is the
real Sobolev space (H1(Ωr))

3 and CΩr is considered as the complexified Hilbert space ofRΩr .
The strain tensor is defined by

εij(ur) =
1

2
(uri,j + urj,i) , (1)

in which v,j denotes the partial derivative of v with respect to xj . The constitutive equation for substructure Ωr which is
assumed to be made up of an elastic material with linear viscous term is written as

σrtot = σr + iω sr , (2)

where σr is the elastic stress tensor defined by σrij(ur) = aijkh εkh(ur) and where iω sr is the viscous part of the total
stress tensor such that srij(ur) = bijkh εkh(ur) (using summation over repeated indices). The mechanical coefficients
aijkh and bijkh depend on x but are independent of ω and verify the usual properties of symmetry, positiveness and
boundedness (lower and upper). The mass density is denoted by ρr and depends on x. For this dissipative substructure,
three sesquilinear forms on CΩr

×CΩr
corresponding to the mass, stiffness and damping operators of substructure Ωr, are

introduced as follows

mr(ur, δur) =

∫
Ωr

ρr ur · δur dx , (3)

kr(ur, δur) =

∫
Ωr

σrij(ur) εij( δur ) dx , (4)

dr(ur, δur) =

∫
Ωr

srij(ur) εij( δur ) dx . (5)

In Eq. (3) and below, the dot denotes the usual Euclidean inner product on R3 extended to C3. It should be noted that the
hermitian form mr is positive definite on CΩr×CΩr . The hermitian forms kr and dr are semi-definite positive since there
are rigid body displacement fields. The set Rrrig of R3-valued rigid body displacement fields (of dimension 6) is a subset
of CΩr

. Consequently, for all δur in CΩr
, kr(ur, δur) and dr(ur, δur) are equal to zero for any ur inRrrig. The following

sesquilinear form zr is defined on CΩr
× CΩr

by

zr(ur, δur) = −ω2mr(ur, δur) + iω dr(ur, δur) + kr(ur, δur) . (6)

Finally, we define the antilinear form f r on CΩr by

� f r , δur�=

∫
Ωr

g
Ωr
· δur dx +

∫
Γr

g
Γr
· δur ds . (7)
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2.3 Variational formulation in u1, uL and u2 for structure Ω

The coupling conditions of the linking substructure ΩL with substructures Ω1 and Ω2 on Γ are written as

u1 = uL on Γ1L , u2 = uL on Γ2L . (8)

σ1
tot n1 = −σLtot nL on Γ1L , σ2

tot n2 = −σLtot nL on Γ2L , (9)

where, for r = 1, L, 2, the vector nr is the unit normal to ∂Ωr, external to Ωr.

The variational formulation in u1, uL and u2 for structure Ω = Ω1 ∪ ΩL ∪ Ω2 is the following. For all real ω in R
and for prescribed (f1, fL, f2), find (u1,uL,u2) in CΩ1

× CΩL
× CΩ2

verifying the linear constraints u1 = uL on Γ1L and
u2 = uL on Γ2L, such that, for all (δu1, δuL, δu2) in CΩ1×CΩL

×CΩ2 verifying the linear constraints δu1 = δuL on Γ1L

and δu2 = δuL on Γ2L, one has

z1(u1, δu1) + zL(uL, δuL) + z2(u2, δu2) =� f1 , δu1� +� fL , δuL� +� f2 , δu2� . (10)

From the mathematical point of view, the existence and uniqueness of a solution can be proved.

3. DYNAMIC SUBSTRUCTURING USING THE FREE-INTERFACE MODES OF Ω1 AND Ω2

The method is based on the use of the variational formulation defined by Eq. (10). The dynamic substructuring is
carried out using the Ritz-Galerkin projection on the free-interface modes of each substructure Ω1 and Ω2, and using a
elastostatic lifting operator for ΩL.

3.1 Free-interface modes of substructures Ω1 and Ω2

For r = 1, 2, a free-interface mode of substructure Ωr is defined as an eigenmode of the conservative problem
associated with free substructure Ωr, subject to zero forces on ∂Ωr. The real eigenvalues ω2 ≥ 0 and the corresponding
eigenmodes ur in RΩr

are then the solutions of the following spectral problem: find ω2 ≥ 0, ur ∈ RΩr
(ur 6= 0) such

that for all δur ∈ RΩr , one has

kr(ur, δur) = ω2mr(ur, δur) . (11)

It can be shown that there exist six zero eigenvalues 0 = (ωr−5)2 = . . . = (ωr0)2 (associated with the rigid body
displacement fields) and that the strictly positive eigenvalues (associated with the displacement field due to structural
deformation) constitute the increasing sequence 0 < (ωr1)2 ≤ (ωr2)2, . . .. The six eigenvectors {ur−5, . . . ,ur0} associated
with zero eigenvalues spanRrig (space of the rigid body displacement fields). The family {ur−5, . . . ,ur0; ur1, . . .} of all the
eigenmodes forms a complete set inRΩr

. For α and β in {−5, . . . , 0; 1, . . .}, we have the orthogonality conditions

mr(urα,u
r
β) = δαβ µ

r
α , (12)

kr(urα,u
r
β) = δαβ µ

r
α ω

r
α

2 , (13)

in which µrα > 0 is the generalized mass of mode α depending on the normalization of the eigenmodes.

3.2 Introduction of the elastostatic lifting operator SL

We consider the solution uLS of the elastostatic problem for substructure ΩL subjected to prescribed displacement
fields u1

Γ1L
on Γ1L and u2

Γ2L
on Γ2L. LetRΓ1L,Γ2L

= RΓ1L
×RΓ2L

(from a mathematical point of view,RΓ1L,Γ2L
is the

Sobolev space H1/2(Γ1L,C3)×H1/2(Γ2L,C3) ) andR
u1
Γ1L

,u2
Γ2L

ΩL
be the sets of functions such that

RΓ1L
=
{

x1 7→ u1
Γ1L

(x1) , ∀ x1 ∈ Γ1L

}
; RΓ2L

=
{

x2 7→ u2
Γ2L

(x2) , ∀ x2 ∈ Γ2L

}
, (14)

R
u1
Γ1L

,u2
Γ2L

ΩL
=
{

uL ∈ CΩL

∣∣ uL = u1
Γ1L

on Γ1L ; uL = u2
Γ2L

on Γ2L

}
. (15)

From Eq. (15), it can be deduced the definition ofR0,0
ΩL

,

R0,0
ΩL

=
{

uL ∈ CΩL

∣∣ uL = 0 on Γ1L ; uL = 0 on Γ2L

}
, (16)

Field uLS satisfies the following variational formulation

kr(uLS , δuLS) = 0 , uLS ∈ R
u1
Γ1L

,u2
Γ2L

ΩL
, ∀ δuLS ∈ R

0,0
ΩL

. (17)
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The unique solution uLS of Eq. (17) defines the linear operator SL from RΓ1L,Γ2L
into R

u1
Γ1L

,u2
Γ2L

ΩL
(called the elastostatic

lifting operator), such that

(u1
Γ1L

,u2
Γ2L

) 7→ uLS = SL(u1
Γ1L

,u2
Γ2L

) . (18)

It should be noted that the discretization of SL by the finite element method is obtained by a classical static condensation
procedure of the stiffness matrix of substructure ΩL with respect to degrees of freedom on Γ1L ∪ Γ2L.

3.3 Construction of a reduced-order model

The following reduced-order model can then be constructed using the elastostatic lifting operator and performing
a Ritz-Galerkin projection with the free-interface modes of substructures Ω1 and Ω2. More precisely, let zLS be the
sesquilinear form defined onRΓ1L,Γ2L

×RΓ1L,Γ2L
such that

zLS ((u1
Γ1L

,u2
Γ2L

), (δu1
Γ1L

, δu2
Γ2L

)) = zL(SL(u1
Γ1L

,u2
Γ2L

), SL(δu1
Γ1L

, δu2
Γ2L

)) . (19)

The reduced-order model of order (m1,m2) is then obtained in substituting, in Eq. (10), zL(uL, δuL) by its approximation
zLS ((u1

Γ1L
,u2

Γ2L
), (δu1

Γ1L
, δu2

Γ2L
)), in which u1

|Γ1L
and u2

|Γ2L
are the traces of u1 and u2 on Γ1L and Γ2L, and then, in

projecting the obtained variational equation in (u1,u2) on the subspace of CΩ1
× CΩ2

spanned by the elastic modes
{u1

1, . . .u1
m1
} × {u2

1, . . .u2
m2
} as follows,

u1,m1 =

m1∑
α=1

q1
α u1

α , u2,m2 =

m2∑
α=2

q2
α u2

α . (20)

We then obtained an complex linear algebraic equation in {q1
1 , . . . q

1
m1
} × {q2

1 , . . . q
2
m2
} which has, for all fixed real ω, a

unique solution.
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