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Abstract. The development of a Computational Fluid Dynamic Tool based on the Finite Element Method with discon-
tinuous Galerkin scheme is presented in this work. The aim of this study is to solve the compressible linearized Euler’s
equation in two dimensions on structured and non-structured meshes. This tool has been used to study sound propagation
phenomena. The Riemann’s problem presented on a convective flow in Euler’s equation is tackled by a HLL’s method
and the time integration being used is the four-stage Runge-Kutta explicit method with second order of accuracy. An
analytically prescribed source term was used to validate the implementation and a monopole, a dipole and a quadrupole
source of sound in subsonic and supersonic flows were simulated. The computational efficiency, the convergence and the
accuracy of the method were tested by comparing the simulation results against the analytical solution for the first prob-
lem and against the solutions based on Green’s functions for the other ones. The convergence rate for high approximation
order is asymptotic; this result is compatible with a discontinuous Galerkin formulation.
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1. INTRODUCTION

The noise generated by machines is an important problem in modern life and the community is looking for a way to
study and understand it. Since Sir. James Lighthill in 1952 proposed his acoustic analogy, it has been used successfully
to compute the sound propagation. At that time the target was to study jet noise. However, significant progress was made
in sound propagation prediction tools, so as other noise sources beside the jet started to be investigated in the aerospace
industry. Starting from the Lighthill’s analogy, many others analogies were proposed. Still in the fifties, Curle (1955) pre-
sented a model of dipoles arising from solid structures and a little more than ten years later, Ffwocs Willians and Hawkings
(1969) proposed that the aerodynamically-generated noise was composed by monopoles, dipoles and quadrupoles arising
from pressure loading, thickness loading and turbulence respectively.

With these analogies the sound generation was uncoupled from the sound propagation. The sound propagation was
easier to simulate because it can be modeled by a second order differential in terms of the pressure fluctuations, so lin-
ear governing equations can be successfully employed. On the other hand, the sound generation has not been precisely
represented by linearization because the sound sources depends of complex interaction mechanisms between the physi-
cal quantities (Rienstra and Hirschberg, 2004). The stochastic noise generation and propagation approach proposed by
Béchara et al. (1994) arise as a good alternative for the linearizations of the sound sources. However, the fast development
of new numerical tools in the last years produced algorithms able to overcome many of the challenges. One of the main
limitations of the first numerical tools was the excessive numerical dispersion and dissipation (Tam, 2004), so some effort
has been done on that area.

High-order methods have been proved to be efficient for solving sound propagation problems and in particular the
discontinuous Galerkin (DG) method has the easiness of parallelizaton as one of its strong features to cope with the high
computational cost. The DG can be viewed as an extension of the finite volume method by using a polynomial base to
represent the quantities rather than their average value or as a traditional finite element method where continuity between
the elements is however not required. The elements are independent and the only communication is through a flux on
their adjacent boundaries and the result of this approach is a block diagonal global mass matrix. The Riemann problem
steaming from the discontinuities can be solved by an upwind method which keep the solution stable in subsonic or
supersonic flows.

Trying to use these features together, we implemented a linearized compressible Euler equation (LEE) solver using the
Nektar++ (www.nektar.info, 2006) library in order to simulate sound propagation using a discontinuous Galerkin scheme.
We present results using the source terms defined by Bailly and Juvé (2000) and compare with reference data. The sound
spreading is analyzed in the middle field (E.Mahona et al., 2004), not so close from the turbulence sources neither so far
where the acoustic perturbation should be measured by integrals methods.
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2. NUMERIC FORMULATION

2.1 Linearized Euler equation

The starting point is to consider that the sound waves represent small perturbations around the steady mean flow. With
this hypothesis, the LEE is able to capture all sound properties (Rienstra and Hirschberg, 2004). So lets consider the mean
flow described by the quantities Ut = (ρ0, ρ0u, ρ0v, p0) which represents the density, momentum in x and y directions
and the pressure respectively, and the perturbations around this quantities (ρ′, ρ0u

′, ρ0v
′, p′). The LEE can be stated in

vectorial form around a stationary mean flow as (Bogey et al., 2002)

∂U

∂t
+
∂E

∂x
+
∂F

∂y
+ H = S. (1)

The vector H contains terms related to the gradients of the mean flow, which are equal to zero when the mean flow is
uniform. The vector S represents possible unsteady sources in the flow. There are other LEE forms but Blom (2003)
shows that all of them are equivalent.

2.1.1 Discontinuous Galerkin formulation

For the spatial discretization, a Discontinuous Galerkin approach is used. Its main advantages are the compactness
of the method and its locality. Regardless of the order used, an element only needs information from the elements with
which it has common boundaries. Considering the LEE in Eq. (1) written as a conservative differential system:

∂U

∂t
+

∂

∂x
F (U) = S, (2)

lets develop the discretization for a scalar unknown u and the results can be extended to vectorial unknowns. First consider
that the solution of Eq. (2) can be represented by a sum of P + 1 analytical functions named trial functions

u(x, t) ≈ uτ (x, y) =
P∑
i=0

ûi(t)φi(x), (3)

which should satisfy the initial and boundary conditions. Let’s split the domaion Ω in Nel non-overlapping subdomains

Ω =

Nel⋃
e=1

Ωe,

Nel⋂
e=1

Ωe = ∂Ωe. (4)

To construct the variational form (or weak form), lets replace the approximate solution Eq. (3) in Eq. (2), multiply by an
analytical function υj(x), named test function, integrate over the element Ωe and apply the divergence theorem over the
second member to obtain

∂

∂t

∫
Ωe

υju
τdΩe +

∫
∂Ωe

υτj f̂(u+, u−) · nd∂Ωe −
∫

Ωe

uτ
∂υj
∂x

dΩe =

∫
Ωe

υjsdΩe. (5)

The term f̂(u+, u−) is known as numerical flux. Considering that the trial and the test functions are the same, the
discontinuous Galerkin is defined by: Find υ, φ ∈ L2 which satisfies Eq. (5) for all Ωe ∈ Ω, where L2 is the Lebesgue
space, or simply square-integrable space functions.

2.2 Numerical flux

The numerical flux is solved as a Riemann problem because we assumed the existence of a discontinuity over Ωe and
Ωe+1 boundaries. The discontinuity is only local because the numerical flux is explicitly calculated and it is responsible
to keep the global solution continuous. There are a number of upwind methods to calculate an approximation to the
numerical flux that can be cited, for example Lax-Friedrichs (Chu, 1978), Roe (Roe, 1981), HLL and HLLC (Harten
et al., 1983). The simplest one is the Lax-Friedrichs but it makes the algorithm unstable so we used the HLL method.
Knowing that the eigenvalues of the Jacobian matrix from Euler’s equation are (u + c0, u, u − c0), where c is the speed
of sound, the numerical flux calculated by the HLL method reads

f̂(u+, u−) =



f(u−) if SL ≤ 0

SRf(u−)− SLf(u+) + SRSL(u+ − u−)

SR − SL
if SL ≤ 0 ≤ SR

f(u+) if SR ≤ 0

(6)

where SL = max(u± c0) e SR = min(u± c0).
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2.3 Time integration

To choose amongst the many time integration methods available, two points merit attention in a DG implementing.
First the discontinuous character of the method is local and this often leads to standard explicit structures, so explicit
methods are preferred for discontinuous finite elements formulations although there are no impediments to use implicit
methods. Second, since the explicit methods are prone the numerical instability, a stability analysis is required for proper
use of these methods and therefore stability criteria were established for temporal integration problems most commonly
used for flow fluids and heat transfer (Li, 2006). In this work, the system of ordinary differential equations was solved
explicitly by means of a 4-steps Runge-Kutta method, and the time-step was calculate so as to make the Courant-Friedrich-
Lewy (CFL) number equal to 1.

3. NUMERICAL RESULTS

3.1 Validation

To validate the implementation accuracy we used a well known validation method which was employed in a similar
way by Karniadakis and Sherwin (2005). In this method the vectorial function

U =


14

sinx
cos y
10

β sin(t)e−α(x2+y2), (7)

with α = 10−2 and β = 10−3 is replaced on the left hand side (LHS) of Eq. (1) deriving the right hand side (RHS). Then
we set the uniform mean flow with the values of Tab. 1 for Mach = 0.5 and ran the software replacing the source term S in
Eq. (1) by the RHS from the analytical function. The simulation time was t=10.5 and polynomial orders P = 1−19 were
tested. Three meshes wre employed: a structured mesh with 81 squares and two unstructured meshes, the first with 110
triangles and the second with 27 triangles and 83 quadrilaterals. All of them covered the domain −100 ≤ x, y,≤ 100.
To compare the results, the L2 norm from the difference between the numerical solution and the analytic function was
calculated.

Table 1. Uniform mean flow values for primitive variables

Variable Mach 0.0 Mach 0.5 Mach 2.0
ρ0 1.4 1.4 1.4
u0 0.0 0.5 2.0
v0 0.0 0.0 0.0
p0 1.0 1.0 1.0

We expected an exponential convergence but we found an asymptotic behavior of the convergence instead. For the
structured mesh, Fig. 1(a), and for the mixed unstructured mesh, Fig. 1(c), we found a small oscillation and for P = 10
the error almost stabilizes, suggesting that the calculations reached machine error levels. This hypothesis is confirmed by
evaluating the magnitude difference of the simulations. The the simplest case, P = 1, involved 324 integration points, or
degrees of freedom, with 210 time steps, while the more complex, P = 19, had 32,400 integration points and 2625 time
steps and flops ranged from 1010 to 1014 for the simplest to the most complex cases respectively. The triangular mesh,
Fig. 1(b) shows smaller errors. This result was unexpected but not surprising. The Nektar++ uses the variable expansion
polynomial base, see (Karniadakis and Sherwin, 2005) and the triangular regions are the natural space of this base.

Figure 2 shows a convergence study for the mesh and polynomial refinement. Babuska and Suri (1994) states that
the hp technique seeks to group the results of exponential convergence (p refinement) and arithmetic convergence (h
refinement). So let’s analyze the hp convergence of the previous problem. Fig. 2(a) shows the hp convergence obtained
by five successive divisions of a four square meshes with polynomial orders varying from P = 1 to P = 6 and with
characteristic mesh lenghts following the sequence h = (1, 0.5, 0.25, 0125, 0.0625). The isolated behavior of h and p
convergence is analysed in Fig. 2(b). In this case P = 3 was fixed and the four square elements mesh was refined following
decreasing sequence h = (1, 0.5, 0.25, 0125, 0.0625). After that, the 16 square elements mesh (h=0.5) was fixed and
the polynomial orders P = (2, 3, 4, 7, 10, 12, 20) were tested. As expected, the h convergence is arithmetic while the p
convergence is exponential.

If DG methods, the convergence of the error is exponential and the computational effort follows the same tendency.
With increasing polynomial order, better convergence results were obtained but this requires greater computational effort
as showed in Fig. 1(d) where the trend line is exponential with a good correlation coefficient. This is the DG disadvantage
but this feature may be offset by its parallelism advantages, as showed by Crivellini and Bassi (2003) and Wilcox et al.
(2010).
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(a) 81 squares structured mesh (b) 110 triangles unstructured mesh

(c) 110 mix elements unstructured mesh (d) Computation effort

Figure 1. L2 norm error convergence.

(a) hp convergence (b) p and h convergence

Figure 2. Error convergence for diferent charactheristic lenght mesh.

3.2 Monopolar source

This subsection presents the propagation of a monopole source of sound in a subsonic and supersonic mean flow as pre-
sented by Bailly and Juvé (2000). This problem is mathematically modeled by inserting the source S = f(x, y) sinωt×
[β, 0, 0, β/γ]T in the LEE, Eq. (1) where f(x, y) = e−α[(x−xs)2+(y−ys)2]. α, β are constants, ω is the angular frequency
and (xs, ys) are the source coordinates. All these parameters have a different value for the subsonic and supersonic
cases presented below. The analytic solution for the pressure field is based on the convolution product p(x, y, t) =
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f(x, y) ∗ dG/dt(x, y, t) where G is the Green function given by

G(x, y, t) =
i

4c0

1√
1−M2

H0

[
k

√
x2 + (1−M2)y2

1−M2

]
exp

(
−i M

1−M2
kx− iωt

)
, (8)

for the subsonic flow and

G(x, y, t) =
1

2c0

1√
M2 − 1

J0

[
k

√
x2 + (M2 − 1)y2

M2 − 1

]
exp

(
−i M

M2 − 1
kx− iωt

)
(9)

supersonic flow which were deduced by Bailly and Juvé (2000) where M is the Mach number, H0 and J0 are the Hankel
and Bessel zero order first kind functions respectively. Both subsonic and supersonic were simulated in a 9×9 squares
strutuctured mesh with dimension −100 ≤ x, y ≤ 100.

3.2.1 Subsonic flow

The monopole propagation in subsonic flow (Mach=0.5) is achieved by using the source term S in Eq. 1 with the
parameters α = ln(2)/2, β = ρ0/100, ω = π/15 and (xs, ys) = (−30, 0). The mean flow has the values of the Tab. 1.
The pressure disturbances for t = 40, 70, 100, 130 are showed in Fig. 3. Fig. 4 shows the pressure profile over the line
y = 0, t = 150 and P = 19; the numerical data is indistinguishable from the analytical solution. Recalling that the wave
speed is given by v = 2πλ/ω, it is possible to see in the same figure the upstream and downstream waves propagating
with speed v0 and 3v0 matching with (1±M) and these results say that the software solve such problems efficiently.

(a) t=40 (b) t=70

(c) t=100 (d) t=130

Figure 3. Pressure surface in subsonic flow - Mach=0.5 and P=19

3.2.2 Supersonic flow

The monopole propagation in supersonic flow (Mach=2.0) is similar to the previous problem with parameters α =
− ln(2)/5, β = ρ0/25, ω = π/5, (xs, ys) = (−50, 0) and uniform mean flow values from Tab. 1. The pressure
disturbances at t = 50, 100, 150, 250 and P = 19 is showed in Fig. 5 where the Mach cone defined in cylindrical
coordinates by M sin = 1 has θ ≈ 29.40 which is in agreement with Mach = 2.0. Besides this, the overlapping waves
propagating downstream with speeds M±1 can be observed. Figure 6 shows the pressure profile for y = 0, t = 250 and
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Figure 4. Subsonic monopole pressure profile - y=0, Mach=0.5, P=19 and t=150

P = 19. Small differences appear between the analytical and numerical solution but in general the problem was well
resolved. We suppose that better results can be achieved by introducing a selective damping schema as proposed in Tam
et al. (1993).

(a) t=50 (b) t=100

(c) t=150 (d) t=250

Figure 5. Pressure surface in supersonic flow - Mach=2.0 and P=19
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Figure 6. Subsonic monopole pressure profile - y=0, Mach=2.0, P=19 and t=250

3.3 Multipolar source

Starting from the mass conservation and momentum conservation equations with source terms it is possible to write
the perturbed wave equation (Rienstra and Hirschberg, 2004)

∂2p′

∂t2
− c20

∂2p′

∂x2
j

= S. (10)

If S = ∂Fi/∂xi and∫
V

∂Fi
∂xi

=

∫
S

FidS = 0,

∫
V

Fidx 6= 0 (11)

the source S represents a dipole and the analytical solution is given by the convolution product p′ = −Fi ∗ ∂G/∂x where
G is the Green function

G(x, y, t) =
i

4c0
H

(1)
0

[
ω

c0
√
x2 + y2

]
e−iωt. (12)

On the other hand, if S = ∂2Tij/∂xi∂xj and∫
v

∂2Tij
∂xixj

= 0,

∫
v

∂Tij
∂xj

= 0, (13)

then S represents a quadrupole where the solution is the sum of the convolution product p′ = ∂F11/∂x ∗ ∂G/∂x +
∂F22/∂y ∗∂G/∂y where G is the Green function given by Eq. (12). Both dipole and quadrupole were simulated in a 9×9
squares strutuctured mesh with dimension −100 ≤ x, y ≤ 100.

3.3.1 Dipole

The dipole distribution is located in the origin and is defined by

fj(x, t) = − 5

π
ε cos(

πx

5
)e−α(x2+y2) sin(ωt)δ1j , S = (0, β, 0, 0)

T
sin(πx/5) sin(ωt)e−α(x2+y2) (14)

where ω = π
10 , β = 0.01 and α = ln(2)/2 and the mean flow with Mach= 0.0 values are in Tab. 1. Figure 7(a) shows the

pressure surface for t = 90 and Fig. 7(b) shows the pressure profile for t = 90 and t = 105 over the line y = 0, in which
the numerical data matches exactly the analytical solution.
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(a) Pressure surface - t=90 (b) Pressure profile - y=0

Figure 7. Dipole distribution - P=19

(a) Pressure surface - t=90 (b) Pressure profile - y=0

Figure 8. Quadrupole distribution - P=19

3.3.2 Quadrupole

The quadrupole distribution is located at the origin and is defined by

Tij =

[
− cos[(π/5)x]e−α(x2+y2) 0

0 cos[(π/5)y]e−α(x2+y2)

]
β

5

π
sin(ωt) (15)

where ω = π
10 , β = 0.01 and α = ln(2)/2 and the mean flow with Mach=0.0 values are in Tab. 1. Figure 8(a) shows the

pressure surface and Fig. 8(b) shows the pressure profile for t = 90 and t = 105 over the line y = 0. Once again, the
simulation data matches the analytical solution.

4. CONCLUSIONS

The DG method was proven to be an efficient tool for sound propagation simulation. The stability and accuracy
were tested and the results are in excellent agreement with previously published data. Particularly, for Computational
Aeroacoustics (CAA) problems it can be an interesting tool because high-order approximations are able to capture a large
variety of wavelengths. The monopole, dipole and quadrupole sources studied in this work can represent some of the
CAA problems. In addition, the multipolar nature of the source is preserved by the numerical scheme, a crucial point for
aerodynamic noise predictions.
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