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Abstract. Therecent increase in distributed power generation and the need tsfer large amounts of power
applications where cablingveight and space are a major issue has increased the interest in High Temp
Superconducting (HTS), transmission DC Cables. HTS DC Cables, have the potential to address the neec
efficient transmission and their usage is expected to increase in the future. Thermal modeling of HTS DC C
critical tool to have in order to better understand and characterize the operation of such transmission lines. A
model, (VEM) Volume Eteents Methodology, is employed to obtain a system of ordinary differential equatio
time as the independent variable which combines principles of classical thermodynamics, momentum equatit
transfer. Writing all the materials properties amperature and pressure local functions in volume elements, di
the problem domain in N small volumes, in both R and Z directions, generated a 9 X N and 2 X N differential :
to temperature and pressure solved for Ru— Kutta 5" order methoddiscretized in space. As results, dimensior
temperature, pressur@nd puming pow: profiles are determined along a Superconducting HTS DC Cable, Bas
Realistic Correlations and the model accounts heat transfer by conduction, convection anwve transfer, useful
tool for simulation, design and your optimizati

Keywords: High Temperature Superconducting DC Cables, Volume Element Methc, Dimensionless Mode
Thermodynamic Analisys.

1. INTRODUCTION

Superconducting High Superconducting Transmission |- DC Cables are very important study, through
increase the demand to power generation and more efficient distributionConventional power distribution grit
have a high costs effectiveness wheompared with the use of superconductor transmission cables. Howev
expected that in a near future, difficulties associated with the construction of new cable tunnels or the retrofit
diameter cables in the existing underground of velpulated areas will overcome the cost disadvantages assc
with the installation of superconductor lin@s related in “Chogt al., 20068'. The high power density in
superconducting cable is a necessary feature for solving above stated challenever, according t“Chowdhuri, et
al., 2005, another important advantage of a superconducting cable is that it can transport the same amount
power as conventional lines, but at lower voltage level. Since superconducting lines must operyogenic
temperatures, the design of such transmission grids requires the installation of cryogenic cooling units ¢
providing sufficient cooling to keep the transmission superconductor cables at its optimum operating temper
long transmision lines, the thermal losses become an important parameter that must be predicted and ¢
however there is a limited number of available models in the literas “Demko.et al.,2007", to predict the thermal
behavior of superconducting cables.

In a recent paper “Ordoneet al.,2013", present a methodology to pressure drop calculations, based on r
correlations that account for the wavy nature of coolant char*fHammonset al.,2012", described the DC Cables
an efficient solution for bulk power transmission especially of renewable er*Rodrigo, et al.,2012", employed a
1m long model cable rated at 1 kV DC Cal“Souza,et al.,2011", proposed a mathematical model to preche
temperature profile in DC Cable with nine volume eleme*Demko and Hassenzahl (201;, proposed a nitrogen
refrigeration stations positioned every 10 and 20 Km to 23kW and 30 bar pressure DC*Hamabe,et al, 2011”,
constructed a 20m — class DC S@¥F with thirty nine layers Bl 2223 HTWang, et al, 2011", present a new
approach for design of DC HTS cable for minimizing the loss as small as pa“Yamaguchiet al, 2011", utilized a

2310



ISSN 2176-5480

C. L. BUIAR; J.V.C. VARGAS and J. C. ORDONEZ
Dimensionless HTS DC Cable Model

iron — steel cryogenic pipe power transmission line applied to 200m DC Cable, “Kegttedt2011”, applied high
temperature superconducting to degaussing system in USS HIGGINS Ship. “Golebiowski and Zareba, (2011)",
proposed a transient thermal field analysis in a futuristic polymeric DC Cable; “Joehsdn2011”, study the impact

of superconducting cables on the dynamic response of current transformers, further the papers “Ciazynski and Turck,
(1993)”, “Cho,et al, 2006” and “Grantet al, 2007”, and the outhers references.

In present work, thermodynamic analysis, combination first thermodynamics law and momentum equation, is
proposed for the determination of the dimensionless temperature, pressure and pumping power profiles along a
superconducting cable, useful tool for optimization of HTS DC Cable. The solution domain is based on the Volume
Elements Methodology (VEM), described in “Vargasal, 2005”, in both r and z direction and the energy equation is
applied to each volume element. Each layer is modeled with a different volume element, generated a 9 x n and 2 x n
differential equations to solved for Runge — Kutfd &rder method and all materials properties are described as
temperature and pressure functions, based on realistic correlations. Two Helium cooling channels are accounts in model
analysis by convective heat transfer, “Hendrieksal, 1975", “McCarty and Stewart, (1962)", and NIST home page.

The results containing temperature, pressure and pumping power profiles analysis to one cell and array DC Cable
length, useful tool optimization HTS DC transmission Cables.

2. MATHEMATICAL MODEL

Based on DC Cable model, “Figure 1", as described in “Saizd, 2011”, “Buiar and Vargas, (2012)", “Ordonez,

et al.,2013", and “Vargaset al, 2005” (Volume Element Method — VEM), the solution domain is divided in small
Volume Elements (VE), in bothandz direction where the energy equation (first law of thermodynamics), is applied to
each VE. Momentum equation is applied in helium cooling channels gas (VE1 and VE4), by pressure drop calculus as
showed in Fig. (1) the schematic diagram of the problem geometry. Each layer is modeled with a different VE. In the
current version of the model, nine layers are considered. These layers are: internal Helium channel (VE1), stainless steel
structural pipe (VEZ2), superconducting cable (VE3), external annular Helium channel (VE4), stainless steel (VE5),
Mylar insulation (VE6), vacuum (VE7), stainless steel (VE8) and Mylar (VE9).
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Figure 1. Schematic diagram DC Cable. “Soezal., 2011"
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2.1 Dimensionless Model

Based on dimensional HTS DC Cable Model, are defined dimensionless variables as specific heat, heat transfer
coefficient, thermal conductivity, mass, mass flow rate, scale time and global heat transfer and writing dimensionless
groups to time, temperature and pressure, given by:

r=t (1)
tesc
o-1
TO

2)
ged
oV

3)
Where t is the time,.d is the scale timet is the dimensionless time, T is the temperatuggs The ambient
temperature 8 is the dimensionless temperatupeis the density, p is the pressure, V the mean velocity in channel
section andP is the dimensionless pressure. To obtain the dimensionless temperature profile, using the Eqg. (1) and

Eq.(3), applied in DC Cable model, generate a differential equations system to temperature profile, given by:
* Helium Cooling Channels:

dg,

19~ Hg-a) e 874

d6,

@
8% (i o601 -HI 6,01 N6, -6)}
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Where®8 is dimensionless temperatureis the dimensionless time, H is the dimensionless heat transfer coefficient,

M is the dimensionless mass flow rate and M is the dimensionless mass.
* Stainless Steel:

d6, _ 1
dr M,C,
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Where H,6, C, K, M are the same dimensionless variabldsjs the global heat transfer coefficient, a@d ., is
the dimensionless radiative heat transfer, given by:

- QI7 rad

mref Cp,HeTO

Conductor:

9)

Frie-0)+0,10,-01+K,[20,-6 - -G)} 1

M, G,

(10)
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Where H,0, C, K andU are the same dimensionless variables @nds the dimensionless generation contribution
term.

o Mylar:

dg =~ -~ ; i i P i + 1

T; :{Qe,rad +U 51 ‘95_96] -Ke[Zﬂe-é’e l_ge l]}M6C6 (11)
dé, T i i T i i j i — i+ 1

g4 {0,46,-6]-0,[6-8]-K,[26,-8*-6"]} vc (12)

Where®, C, K, U , are the same dimensionless variables in others@gsy , the dimensionless radiative is described
as:

~ Qiﬁrad
O — (13)
* mref Cp,HeTO

2.2 Pumping Work

The parametrical analysis was performed in gas channels, using mass flow as the changing in process, obtained:

M
W, = Ap (14)

Integrating the pressure profile are obtained as:

i\
2f Lp' V'
pp, 2L v 5)
Dh
Using the pressure gradient profile and the fluid mass flow rate giveill byp v 1 D?/ 4, the pumping power is
cdculated as follows:

_mipf LvD

W =" (16)
Wherep is obtained from Eq. (15) along the length dc cabtbe densityf is the friction factor, L is the DC Cable

length andV the mean velocity in channel section.
2.2.1 Dimensionless Pumping Work

Consider the VE1 configuration shown in “Figure 1”. The Helium channel has a length L in z direction, is
surounded by VE2 at a temperaturg. A stream of single-phase fluid is pumped into the tube at a known inlet
termmperature, the transient balance of energy in the control volume defined by the internal surface of the duct requires is
described in Eq. (4). The pressure drop along the tube is described in pressure gradient profile and the pumping power
in Eq. (14). Using Egs. (15) and pressure gradient profile, the dimensionless pumping power constraint becomes:

2] 4 -
V’\“/i:W pl;ref :gMBf% (17)
b P rhref 772 Di

Where (L, D) = (L, D) / Der. The dimensionless fluid mass flow rate is definedMs= v iy, , where Ler and

Myes are areference length and a reference mass flow rate, respectively. The index i, present the local channel analysis,
in this case i=1 or i=4.

2.3 Electrical Work:
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Based on Ohm'’s law and Wiedemann — Franz law, forrdtegtionship between thermal conductivity and electric
resistivity, see (Bejan, 1982), the heat generation associated with the current transmission is given by:

e

Where y is the voltage, T is the temperaturgjsfthe sectional area, the conductor thermal conductivity, constant
Ly = 245x10°® 6/\/A'1|<‘1)2 and L the DC Cable length. The units for Voltage (volt), current (ampere) and resistance
(ohm), has the similar signification with power (watt), energy and work (joule), in units, given by:

w w
Q= — V= (19)
m* K? m? K

WhereQ - ohm, W — watt, K — Kelvin, m — meter and V — volt unit. Create the dimensionless vafigple. is
defined as:

WI = V.\Ieletric - yzkcAlb 1 (20)
S M CoTo |\ LoLTh ) MierCpTo

Where vy, k, Ay, T and constant 4, are the same parameters showed in Equation (18). Create in the Eq.(20) the

_Me S L the dimensionless electric power is given by:

KA

dimensionless group@:[ y J
LT,

V-\T/eletric = Weletric = g (21)
My o To

ref

3. RESULTS — BY FORTRAN
Insert my results in fortran program with modificato
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